Get Answers to all your Questions

header-bg qa

If a+b+c=0 and a,b ,c are rational . Prove that the roots of equation ( b+c-a)x^2 +(c+a-b)x+(a+b-c)=0 are rational .

Answers (1)

best_answer

Solution:  Given equation is 

                              (b+c-a)x^2+(c+a-b)x+(a+b-c)=0

                ecause               (b+c-a)+(c+a-b)+(a+b-c)=a+b+c=0

                 	herefore      x=1  is a root of equation  , let other root of equation is alpha

                  Rightarrow            1	imes alpha =fraca+b-cb+c-a=frac-c-c-a-a=fracca

                  Hence , both roots of equation  are rational.     

Posted by

Deependra Verma

View full answer