Let w=e^2i(pi)/3 and a,b,c,x,y,z be non-zero complex number satisfying
a+b+c=x
a+bw+cw^2=y
a+bw^2+cw=z
Then, the value of
|x^2| +|y^2| +|z^2| /|a^2| +|b^2| +|c^2| is (where w denote omega)
Let w=e^2i(pi)/3 and a,b,c,x,y,z be non-zero complex number satisfying
a+b+c=x
a+bw+cw^2=y
a+bw^2+cw=z
Then, the value of
|x^2| +|y^2| +|z^2| /|a^2| +|b^2| +|c^2| is (where w denote omega)