Get Answers to all your Questions

header-bg qa

Let w=e^2i(pi)/3 and a,b,c,x,y,z be non-zero complex number satisfying a+b+c=x a+bw+cw^2=y a+bw^2+cw=z Then, the value of |x^2| +|y^2| +|z^2| /|a^2| +|b^2| +|c^2| is (where w denote omega)

Answers (1)

best_answer

Solution: We have ,

        \Rightarrow E=xarx+yary+zarz/left | a^2 
ight |+left | b^2 
ight |+left | c^2 
ight |\ \Rightarrow N^r=(a+b+c)(ara+arb+arc)+(a+bomega +comega ^2)(ara+arbomega ^2+arcomega )+(a+bomega ^2+comega )(ara+arbomega +arcomega^2 ).

       Simpliying and using the result 1+omega +omega ^2=0 ,we get

       \ E=3(left | a 
ight |^2+left | b 
ight |^2+left | c 
ight |^2)/left | a 
ight |^2+left | b 
ight |^2+left | c 
ight |^2=3

Posted by

Deependra Verma

View full answer