Get Answers to all your Questions

header-bg qa

Two different dice are thrown together. Find the probability that the numbers obtained have

(i) even sum, and

(ii) even product.

 

 

 

 
 
 
 
 

Answers (1)

Given \rightarrow Two different dice are thrown.

Total number of outcomes when two dice are thrown are n(T)

Total outcomes \rightarrow  

\left \{ (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),

  (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),

  (3,1),(3,2),(3,3),(3,4),(3,5),(3,6),

  (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),

  (5,1),(5,2),(5,3),(5,4),(5,5),(5,6),

  (6,1),(6,2),(6,3),(6,4),(6,5),(6,6) \}

\therefore n(T)=36

(i) Probablity of finding even sum =P_1

Outcomes when sum is even

=(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),

      (3,1),(3,3),(3,5),(4,2),(4,4),(4,6),

      (5,1),(5,3),(5,5),(6,2),(6,4),(6,6)

P_1=\frac{n(P_1)}{n(T)}=\frac{18}{36}=\frac{1}{2}

(ii) Probablity of finding even product =P_2

Outcomes when product is even 

n(P_2)=(1,2),(1,4),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,2),(3,4),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,2),(5,4),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)

n(P_2)=27

P_2=\frac{n(P_2)}{n(T)}=\frac{27}{36}=\frac{3}{4}   

 

 

     

Posted by

Ravindra Pindel

View full answer