Get Answers to all your Questions

header-bg qa
Filter By

All Questions

If z be a complex number satisfying \left | Re\left ( z \right ) \right |+\left | Im(z) \right |=4, then \left | z \right | cannot be : 
Option: 1 \sqrt{7}
 
Option: 2 \sqrt{\frac{17}{2}}
 
Option: 3 \sqrt{10}
 
Option: 4 \sqrt{8}
 
 

Option d

 

View Full Answer(3)
Posted by

Shravani.D.K

Let a,b\epsilon \textbf{R},a\neq 0 be such that the equation, ax^{2}-2bx+5=0 has a repeated root \alpha, which is also a root of the equation, x^{2}-2bx-10=0. If \beta is the other root of this equation, then \alpha ^{2}+\beta ^{2} is equal to:
Option: 1 24
Option: 2 25
Option: 3 26
Option: 4 28
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

iii) if roots D = 0, then roots will be real and equal, then


\\\mathrm{x_1=x_2 = \frac{-b}{2a} } \\\mathrm{Then, \;\; ax^2+bx +c =a(x-x_1)^2 }

-

ax2 – 2bx + 5 = 0 having equal roots or D=0 and \alpha=\frac{b}{a}

(2b)^2=4\times5\times a\;\;\Rightarrow \;\;b^2=5a

Put \alpha=\frac{b}{a} in the second equation

{x^{2}-2 b x-10=0} \\ {\Rightarrow b^{2}-2 a b^{2}-10 a^{2}=0}

\\\Rightarrow 5 a-10 a^{2}-10 a^{2}=0 \\ \Rightarrow 20 a^{2}=5 a \\ \Rightarrow a=\frac{1}{4} \text { and } \mathrm{b}^{2}=\frac{5}{4} \\ \alpha^{2}= 20 \text { and } \beta^{2}=5 \\ \alpha^{2}+\beta^{2} \\ =5+20 \\ =25

Correct Option 2

View Full Answer(1)
Posted by

avinash.dongre

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The  number of real roots of the equation,  e^{4x}+e^{3x}-4e^{2x}+e^{x}+1=0  is :   
Option: 1 3
Option: 2 4
Option: 3 1
Option: 4 2
 

 

 

Transcendental function -

Transcendental functions:  the functions which are not algebraic are called transcendental functions. Exponential, logarithmic, trigonometric and inverse trigonometric functions are transcendental functions.

Exponential Function: function f(x) such that \mathrm{f(x)=a^x} is known as an exponential function.

\\\mathrm{base:\;\;a>0,a\neq1}\\\mathrm{domain:x\in \mathbb{R}}\\\mathrm{range:f(x)>0}

 

 

Logarithmic function:  function f(x) such that f\left ( x \right )= \log\: _{a}x is called logarithmic function 

\\\mathrm{base:\;\;a>0,a\neq1}\\\mathrm{domain:x>0}\\\mathrm{range:f(x)\in\mathbb{R}}
         

                    If a > 1                                                                               If a < 1

Properties of Logarithmic Function

\\\mathrm1.\;{\log_e(ab)=\log_ea+\log_eb}\\\mathrm{2.\;\log_e\left ( \frac{a}{b} \right )=\log_ea-\log_e b}\\\mathrm{3.\;\log_ea^m=m\log_ea}\\\mathrm{4.\;\log_aa=1}\\\mathrm{5.\;\log_{b^m}a=\frac{1}{m}\log_ba}\\\mathrm{6.\;\log_ba=\frac{1}{\log_ab}}\\\mathrm{7.\;\log_ba=\frac{\log_ma}{\log_mb}}\\\mathrm{8.\;a^{\log_am}=m}\\\mathrm{9.\;a^{\log_cb}=b^{\log_ca}}\\\mathrm{10.\;\log_ma=b\Rightarrow a=m^b}

-

 

 

 

Quadratic Equation -

The root of the quadratic equation is given by the formula:

 

\\\mathrm{x = \frac{-b \pm \sqrt{D}}{2a}}\\\\\mathrm{or} \\\mathrm{x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}}

 Where D is called the discriminant of the quadratic equation, given by D = b^2 - 4ac ,

 

-

 

Let e^{x}=t \in(0, \infty)

Now the equation 

\begin{array}{l}{t^{4}+t^{3}-4 t^{2}+t+1=0} \\ {t^{2}+t-4+\frac{1}{t}+\frac{1}{t^{2}}=0} \\ {\left(t^{2}+\frac{1}{t^{2}}\right)+\left(t+\frac{1}{t}\right)-4=0}\end{array}

Let \mathrm{t}+\frac{1}{\mathrm{t}}=\alpha

\begin{array}{l}{\left(\alpha^{2}-2\right)+\alpha-4=0} \\ {\alpha^{2}+\alpha-6=0} \\ {\alpha^{2}+\alpha-6=0}\end{array}

\alpha=-3,2

Only positive value possible so \alpha=2 \Rightarrow \quad \mathrm{e}^{x}+\mathrm{e}^{-\mathrm{x}}=2

x=0 is the only solution.

View Full Answer(1)
Posted by

avinash.dongre

The least positive value of 'a' for which the equation, 2x^{2}+(a-10)x+\frac{33}{2}=2a has real roots is
Option: 1 8
Option: 2 6
Option: 3 4
Option: 42
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

 

ii) If D > 0, then roots will be real and distinct. 

\\\mathrm{x_1 = \frac{-b + \sqrt{D}}{2a} } \;\mathrm{and \;\;x_2 = \frac{-b - \sqrt{D}}{2a} } \\\\\mathrm{Then,\;\; ax^2+bx +c =a(x-x_1)(x-x_2) }

 

iii) if roots D = 0, then roots will be real and equal, then


\\\mathrm{x_1=x_2 = \frac{-b}{2a} } \\\mathrm{Then, \;\; ax^2+bx +c =a(x-x_1)^2 }

-

{D \geqslant 0} \\\\ {(a-10)^{2}-8\left(\frac{33}{2}-2 a\right) \geq 0} \\\\ {a^{2}+100-20 a-132+16 a \geq 0}

\\ {a^{2}-4 a-32 \geqslant 0} \\\\ {a^{2}-8 a+4 a-32 \geq 0} \\\\ {(a+4)(a-8) \geq 0}

a \leq -4 \ \text{ or }\ a \geq \ 8

least positive value is 8.

View Full Answer(1)
Posted by

Kuldeep Maurya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

If the equation, x^{2}+bx+45=0(b\epsilon R) has conjugate complex roots and they satisfy \left | z+1 \right |=2\sqrt{10}, then:
 
Option: 1 b^{2}+b=12
Option: 2 b^{2}-b=42
Option: 3 b^{2}-b=30
Option: 4 b^{2}+b=72
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

 

i) if D < 0, then root are in the form of complex number, 

   If a,b,c ∈ R (real number) then roots will be conjugate of each other, means if p + iq is one of          

   the roots then other root will be p - iq

 

-

 

 

Let  z=\alpha\pm i\beta be roots of the equation

so 2 \alpha=-b \text { and } \alpha^{2}+\beta^{2}=45,(\alpha+1)^{2}+\beta^{2}=40

So, (\alpha+1)^{2}-\alpha^{2}=-5

\begin{array}{l}{\Rightarrow \quad 2 \alpha+1=-5 \quad \Rightarrow \quad 2 \alpha=-6} \\ {\text { so } \mathrm{b}=6}\end{array}\\Hence,\;\;b^2-b=30

Correct Option 3

View Full Answer(1)
Posted by

Kuldeep Maurya

Let \alpha and \beta be two real roots of the equation (k+1)\tan ^{2}x-\sqrt{2}\cdot\lambda \tan x=(1-k), where, k(\neq-1 ) and \lambda are real numbers. If \tan^2 (\alpha +\beta )=50, then a value of \lambda is :
Option: 1 5\sqrt{2}  
Option: 2 10\sqrt{2}  
Option: 3 10  
Option: 4 5  
 

As we have learnt,

Sum of roots:

\\\mathrm{\alpha + \beta =\frac{-b}{a}}

Product of roots:

 \alpha \cdot \beta = \frac{c}{a}

Trigonometric Ratio for Compound Angles (Part 2)


\\\mathrm{\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}}\\\\\mathrm{\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}}

 

 

Now,

\\\tan \alpha + \tan{\beta } = \frac{\sqrt{2} \lambda}{1+k}\\\\\tan \alpha \times \tan{\beta } = \frac{k-1}{1+k} 

Since \tan \alpha \& \tan \beta are the roots of the given equation

\tan(\alpha + \beta) = \frac{\tan \alpha + \tan{\beta }}{1-\tan{\alpha }\tan{\beta }} = \frac{\frac{\sqrt{2}\lambda }{1+k}}{1- \frac{k-1}{k+1}} =\frac{\lambda}{\sqrt2}

Now,

\\ {\tan ^{2}(\alpha+\beta)=\frac{\lambda^{2}}{2}=50} \\ {\lambda=10}

 

View Full Answer(1)
Posted by

Kuldeep Maurya

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


Let \alpha be a root of the equation x^{2}+x+1=0 and the matrix A=\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1 & 1\\ 1 & \alpha & \alpha ^{2}\\ 1 & \alpha ^{2}& \alpha ^{4} \end{bmatrix}, Then the matrix A^{31} is equal to :
Option: 1 A
Option: 2A^{2}
Option: 3 A^{3}
Option: 4 I_{3}
 

 

 

Cube roots of unity -

z is a complex number

Let z3 = 1  

⇒ z3 - 1 = 0

⇒ (z - 1)(z2 + z + 1) = 0

⇒ z - 1 = 0  or z2 + z + 1 = 0

 

\\\mathrm{\therefore \;z=1\;\;or\;\;z=\frac{-1\pm\sqrt{(1-4)}}{2}=\frac{-1\pm i\sqrt{3}}{2}} \\\mathrm{Therefore, \;\mathbf{z=1},\;\mathbf{z=\frac{-1+ i\sqrt{3}}{2}}\;\;and\;\;\mathbf{z=\frac{-1- i\sqrt{3}}{2}}}

 

If the second root is represented by ?, then the third root will be represented by ?2.

 

 

\\\mathrm{\mathbf{\omega=\frac{-1+ i\sqrt{3}}{2}},\;\;\omega^2=\mathbf{\frac{-1- i\sqrt{3}}{2}}}

 

Properties of cube roots:

i) 1 + ? + ?2 = 0 and ?3 = 1

ii) to find ?n , first we write ? in multiple of 3 with remainder belonging to 0,1,2 like n=3q + r

Where r is from 0,1,2. Now ?n = ?3q + r = (?3)q·?r  = ?r.

-

 

 

 

 

Multiplication of two matrices -

Matrix multiplication: 

Two matrices  A and B are conformable for the product AB if the number of columns in A and the number of rows in B is equal. Otherwise, these two matrices will be non-conformable for matrix multiplication. So on that basis,

i) AB is defined only if col(A) = row(B)

ii) BA is defined only if col(B) = row(A)

If 

    \\\mathrm{A = \left [ a_{ij} \right ]_{m\times n}} \\\mathrm{\\B=\left [ b_{ij} \right ]_{n\times p}}

    \\\mathrm{C = AB = \left [ c_{ij} \right ]_{m\times p}} \\\mathrm{Where\;\; c_{ij} = \sum_{j=1}^{n}a_{ij}b_{jk}, 1\leq i\leq m,1\leq k\leq p} \\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=a_{i1}b_{1k} + a_{i2}b_{2k} + a_{i3}b_{3k}+ ... + a_{in}b_{nk}}

For examples

\\\mathrm{Suppose,\;two\;matrices\;are\;given}\\\mathrm{A=\begin{bmatrix} a_{11} &a_{12} &a_{13} \\ a_{21} &a_{22} & a_{33} \end{bmatrix}_{2\times3}\;\;\;and\;\;\;B=\begin{bmatrix} b_{11}& b_{12} &b_{13} \\b_{21} &b_{22} &b_{23} \\b_{31} &b_{32} &b_{33} \end{bmatrix}_{3\times3}}\\\\\mathrm{To\:obtain\:the\:entries\:in\:row\:\mathit{i}\:of\:AB,\:we\:multiply\:the\:entries\:in\:row\:\mathit{i}\:of\:A\:by\:}\\\mathrm{column\:\mathit{j}\:in\:B\:and\:add.}\\\mathrm{given\:matrices\:A\:and\:B,\:where\:the\:order\:of\:A\:are\:2\times3\:and\:the\:order\:of\:B\:are\:3\times3,}\\\mathrm{the\:product\:of\:AB\:will\:be\:a\:2\times3\:matrix.}\\\\\mathrm{To\:obtain\:the\:entry\:in\:row\:1,\:column\:1\:of\:AB,\:multiply\:the\:}\\\mathrm{first\:row\:in\:A\:by\:the\:first\:column\:in\:B,and\:add.}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{bmatrix} a_{11} &a_{12} &a_{13} \end{bmatrix}\begin{bmatrix} b_{11}\\b_{21} \\b_{31} \end{bmatrix}=a_{11}\cdot b_{11}+a_{12}\cdot b_{21}+a_{13}\cdot b_{31}}

\\\mathrm{To\:obtain\:the\:entry\:in\:row\:1,\:column\:2\:of\:AB,\:multiply\:the\:}\\\mathrm{first\:row\:in\:A\:by\:the\:second\:column\:in\:B,and\:add.}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{bmatrix} a_{11} &a_{12} &a_{13} \end{bmatrix}\begin{bmatrix} b_{12}\\b_{22} \\b_{32} \end{bmatrix}=a_{11}\cdot b_{12}+a_{12}\cdot b_{22}+a_{13}\cdot b_{32}}\\\\\mathrm{To\:obtain\:the\:entry\:in\:row\:1,\:column\:3\:of\:AB,\:multiply\:the\:}\\\mathrm{first\:row\:in\:A\:by\:the\:thired\:column\:in\:B,and\:add.}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{bmatrix} a_{11} &a_{12} &a_{13} \end{bmatrix}\begin{bmatrix} b_{13}\\b_{23} \\b_{33} \end{bmatrix}=a_{11}\cdot b_{13}+a_{12}\cdot b_{23}+a_{13}\cdot b_{33}}\\\\\mathrm{We\:proceed\:the\:same\:way\:to\:obtain\:the\:second\:row\:of\:AB.\:In\:other\:words,\:}\\\mathrm{row\:2\:of\:A\:times\:column\:1\:of\:B;}\\\mathrm{row\:2\:of\:A\:times\:column\:2\:of\:B;}\\\mathrm{row\:2\:of\:A\;times\:column\:3\:of\:B.}

\\\mathrm{When\:complete,\:the\:product\:matrix\:will\:be}\\\\\mathrm{AB=\begin{bmatrix} a_{11}\cdot b_{11}+a_{12}\cdot b_{21}+a_{13}\cdot b_{31}\;\;& a_{11}\cdot b_{12}+a_{12}\cdot b_{22}+a_{13}\cdot b_{32}\;\; &a_{11}\cdot b_{13}+a_{12}\cdot b_{23}+a_{13}\cdot b_{33} \\ a_{21}\cdot b_{11}+a_{22}\cdot b_{21}+a_{23}\cdot b_{31} \;\;& a_{21}\cdot b_{12}+a_{22}\cdot b_{22}+a_{23}\cdot b_{32} \;\;& a_{21}\cdot b_{13}+a_{22}\cdot b_{23}+a_{23}\cdot b_{33} \end{bmatrix}}

 

-

 

 

Given

\\x^2+x+1=0\\\Rightarrow \alpha\;is\;the\;root\;of\;the\;eq\\\alpha=\omega,\;\;\omega^2\\\text{A}=\frac{1}{\sqrt3}\begin{bmatrix} 1 &1 &1 \\ 1& \omega &\omega^2 \\ 1 &\omega^2 &\omega \end{bmatrix}\\\text{A}^2=\frac{1}{3}\begin{bmatrix} 3 &0 &0 \\ 0& 0 &3 \\ 0 &3 &0 \end{bmatrix}

\\\text{A}^4=\frac{1}{3}\begin{bmatrix} 3 &0 &0 \\ 0& 0 &3 \\ 0 &3 &0 \end{bmatrix}\times \frac{1}{3}\begin{bmatrix} 3 &0 &0 \\ 0& 0 &3 \\ 0 &3 &0 \end{bmatrix}\\\text{A}^4=I\\\therefore A^{31}=A^{28}\cdot A^3=A^3

Correct option (3)

View Full Answer(1)
Posted by

Ritika Jonwal

If Re \left [ \frac{z-1}{2z+i} \right ]=1, where z=x+iy, then the point (x,y) lies on a :


Option: 1 circle whose centre is at \left [ -\frac{1}{2},-\frac{3}{2} \right ].

Option: 2 straight line whose slope is \frac{3}{2}.

Option: 3 circle whose diameter is \frac{\sqrt{5}}{2}.

Option: 4 straight line whose slope is -\frac{2}{3}.
 

 

 

Conjugate of complex numbers and their properties -

The complex conjugate of a complex number a + ib (a, b are real numbers and b ≠ 0) is a − ib. 

It is denoted as  \bar{z}.

i.e. if z = a + ib, then its conjugate is  \bar{z}  = a - ib.

Conjugate of complex numbers is obtained by changing the sign of the imaginary part of the complex number. The real part of the number is left unchanged.


Note: 

  • When a complex number is added to its complex conjugate, the result is a real number. i.e. z = a + ib, \bar{z}  = a - ib

Then the sum, z + \bar{z}= a + ib + a - ib = 2a (which is real)

  • When a complex number is multiplied by its complex conjugate, the result is a real number i.e. z = a + ib, \bar{z} = a - ib

Then the product, z?\bar{z} = (a + ib)?(a - ib) = a2 - (ib)2

                                                  = a2 +  b2 (which is real)

-

Circle(Definition) -
 

General Form:

The equation of a circle with centre at (h,k) and radius r is 

\\ {\Rightarrow(x-h)^{2}+(y-k)^{2}=r^{2}} \\ {\Rightarrow x^{2}+y^{2}-2 h x-2 k y+h^{2}+k^{2}-r^{2}=0\;\;\;\;\;\;\;\;\;\;\;\ldots(i)} \\ {\text { Which is of the form : }} \\ {\mathbf{x}^{2}+\mathbf{y}^{2}+2 \mathbf{g} \mathbf{x}+2 \mathbf{f} \mathbf{y}+\mathbf{c}=\mathbf{0}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ldots(ii)}

This is known as the general equation of the circle.

Compare eq (i) and eq (ii)

h = -g, k = -h   and c=h2+k2-r2

Coordinates of the centre  (-g,-f)

Radius =g2+f2-c  

-

\\Re\left ( \frac{z-1}{2z+i} \right )=1

\\\text{put}\;z=x+iy

\operatorname{Re}\left(\frac{(x+i y)-1}{2(x+i y)+i}\right)=1

\operatorname{Re}\left(\left(\frac{(x-1)+i y}{2 x+i(2 y+1)}\right)\left(\frac{2 x-i(2 y+1}{2 x-i(2 y+1)}\right)\right)=1

\Rightarrow 2 x^{2}+2 y^{2}+2 x+3 y+1=0

x^{2}+y^{2}+x+\frac{3}{2} y+\frac{1}{2}=0

\Rightarrow $ locus is a circle whose

\text {Centre is }\left(-\frac{1}{2},-\frac{3}{4}\right)\text { and radius } \frac{\sqrt{5}}{4}.

\Rightarrow \text { diameter }=\frac{\sqrt{5}}{2}

Correct Option (3)

View Full Answer(1)
Posted by

Ritika Jonwal

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Let \alpha =\frac{-1+i\sqrt{3}}{2}. If a=(1+\alpha )\sum_{k=0}^{100}\alpha ^{2k} and b=\sum_{k=0}^{100}\alpha ^{3k}, then a and b are the roots of the quadratic equation :
Option: 1 x^{2}+101x+100=0
Option: 2 x^{2}+102x+101=0
Option: 3 x^{2}-102x+101=0
Option: 4 x^{2}-101x+100=0
 

Cube roots of unity

\\\mathrm{\mathbf{\omega=\frac{-1+ i\sqrt{3}}{2}},\;\;\omega^2=\mathbf{\frac{-1- i\sqrt{3}}{2}}}

 

Sum of n-term of a GP

Let Sn be the sum of n terms of the G.P. with the first term ‘a’ and common ratio ‘r’. Then 

S_n=a( \frac{r^n-1}{r-1})

 

Now,

\alpha = \omega

b = 1 + \omega3 + \omega6 + ……\omega300= 101

a= (1+\omega) (1+\omega2+\omega4+\omega6.....+\omega200)

a=(1+\omega)\frac{(\omega^{2(101)}-1)}{\omega^2-1}=\frac{1-\omega^2}{1-\omega^2}=1

 

Now, equation with roots 1 and 101 is

x2 – (1+101)x + 101*1 = 0

x2 – 102x + 101 = 0

Correct Option (3)

View Full Answer(1)
Posted by

vishal kumar

Let \alpha and \beta be the roots of the equation x^{2}-x-1=0. If P_{k}=\left ( \alpha \right )^{k}+\left ( \beta \right )^{k},k\geq 1, then which one of the following statements is not true ?  
Option: 1 P_{1}+P_{2}+P_{3}+P_{_{4}}+P_{5} =26
Option: 2 P_{5}=11
Option: 3 P_{5}=P_{2}\cdot P_{3}
Option: 4 P_{3}=P_{5}- P_{4}
 

 

 

Polynomial Equation of Higher Degree, Remainder theorem -

\\\mathrm{An \;equation \;of \;the\; form\; a_0x^n+a_1x^{n-1}+...+a_{n-1}x+a_n=0, } \\\mathrm{where \; a_0, a_1,..., a_n \; are\; constant\; and \; a_0 \; \neq 0}

Is known as the polynomial equation of degree n which have n and only n roots.

 

\\\mathrm{sum \;of\; all\; roots=\sum \alpha_1 = \alpha_1 + \alpha_2 +...+\alpha_n-1+\alpha_n=(-1)\frac{a_1}{a_0}} \\\\\mathrm{sum\; of \; products\; taken \; two \; at \; a \; time\;} \\\mathrm{\;\;\;\sum \alpha_1\alpha_2=\alpha_1\alpha_2 + \alpha_1\alpha_3 + ... + \alpha_1\alpha_n + \alpha_2\alpha_3+...+\alpha_2\alpha_n+...+\alpha_{n-1}\alpha_n=(-1)^2\frac{a_2}{a_0}} \\ \\\mathrm{sum\; of \; products\; taken \; three \; at \; a \; time\;} \\\mathrm{\;\;\; \sum \alpha_1\alpha_2\alpha_3 = (-1)^3\frac{a_3}{a_0}} \\\\\mathrm{product\; of \; all \; roots = \alpha_1\alpha_2...\alpha_n = (-1)^n\frac{a_n}{a_0}}

For example, suppose n = 3 and ax3 + bx2 +cx + d = 0 is polynomial equation with a ≠ 0 and ?, ? and ? are the roots of the equation then :

\\\mathrm{\alpha+\beta+\gamma = -\frac{b}{a}} \\\mathrm{\sum \alpha \beta =\alpha\beta+\beta\gamma+\gamma\alpha= (-1)^2\frac{c}{a}=\frac{c}{a}} \\\mathrm{\alpha\beta \gamma=(-1)^3\frac{d}{a}=-\frac{d}{a}}

-

\alpha+\beta=1 \text{ and }\alpha\timex\beta=-1

\\P_1=\alpha+\beta=1\\P_2=\alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta=1-2(-1)=3\\P_3=\alpha^3+\beta^3=(\alpha+\beta)(\alpha^2+\beta^2-\alpha\beta)=(1\times(3+1))=4\\P_4=\alpha^4+\beta^4=(\alpha^2+\beta^2)^2-2\alpha^2\beta^2=(P_2)^2-2(-1)^2=7

x^2=x+1

\\x^2=x+1\Rightarrow x^5=x^4+x^3\\ \alpha^5=\alpha^4+\alpha^3\text{ and }\beta^5=\alpha^4+\alpha^3

\alpha^5+\beta^5=P_4+P_3=11

\mathrm{P}_{5} \neq \mathrm{P}_{2} \times \mathrm{P}_{3}

Correct option (3)

View Full Answer(1)
Posted by

Ritika Jonwal

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img