Get Answers to all your Questions

header-bg qa
Filter By

All Questions

In the expansion of \left ( \frac{x}{cos\theta }+\frac{1}{x\sin \theta } \right )^{16}, if  L_{1}  is the least value of the term independent of x when \frac{\pi }{8}\leq \theta \leq \frac{\pi }{4} and  L_{2}  is the least value of the term independent of x when \frac{\pi }{16}\leq \theta \leq \frac{\pi }{8}, then the ratio L_{2}:L_{1}  is equal to : 
Option: 1 16:1
Option: 2 8:1
Option: 3 1:8
Option: 4 1:16
 

General Term of Binomial Expansion\left(T_{r+1}\right)^{\mathrm{th}} \text { term is called as general term in }(x+y)^{n}\;\text{and general term is given by}

\mathrm{T}_{\mathrm{r}+1}=^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{\;x}^{\mathrm{n}-\mathrm{r}} \cdot \mathrm{y}^{\mathrm{r}}

Term independent of x: It means term containing x0,

 

Now,

\\\mathrm{T}_{\mathrm{r}+1}=^{16} \mathrm{C}_{\mathrm{r}}\left(\frac{\mathrm{x}}{\cos \theta}\right)^{16-\mathrm{r}}\left(\frac{1}{\mathrm{x} \sin \theta}\right)^{\mathrm{r}}\\\text{for r = 8 term is free from 'x' }\\\begin{aligned} &\mathrm{T}_{9}=^{16} \mathrm{C}_{8} \frac{1}{\sin ^{8} \theta \cos ^{8} \theta}\\ &\mathrm{T}_{9}=^{16} \mathrm{C}_{8} \frac{2^{8}}{(\sin 2 \theta)^{8}}\\ &\text { in } \theta \in\left[\frac{\pi}{8}, \frac{\pi}{4}\right], L_{1}=^{16} \mathrm{C}_{8} 2^{8} \end{aligned}

\\\because \text{Min value of L}_1\;\text{at }\theta=\pi/4\\\text { in } \theta \in\left[\frac{\pi}{16}, \frac{\pi}{8}\right], L_{2}=16 \mathrm{C}_{8} \frac{2^{8}}{\left(\frac{1}{\sqrt{2}}\right)^{8}}=^{16} \mathrm{C}_{8} \cdot 2^{8} \cdot 2^{4}\\\\\because \text{Min value of L}_2\;\text{at }\theta=\pi/8\\\frac{L_{2}}{L_{1}}=\frac{16 \mathrm{C}_{8} \cdot 2^{8} 2^{4}}{^{16} \mathrm{C}_{8} \cdot 2^{8}}=16

Correct option 1

View Full Answer(1)
Posted by

avinash.dongre

If a, b and c are the greatest values of ^{19}C_{p},^{20}C_{q},^{21}C_{r} respectively, then:
 
Option: 1 \frac{a}{11}=\frac{b}{22}=\frac{c}{42}
Option: 2 \frac{a}{10}=\frac{b}{11}=\frac{c}{42}
Option: 3 \frac{a}{11}=\frac{b}{22}=\frac{c}{21}
Option: 4 \frac{a}{10}=\frac{b}{11}=\frac{c}{21}
 

Binomial Coefficient of the middle term is greatest.

 

Now,

\\^nC_{r}\;\text{ is max at middle term}\\\begin{array}{l}{a=^{19} C_{p}=^{19} C_{10}=^{19} C_{9}} \\ {b=^{20} C_{q}=^{20} C_{10}} \\ {c=^{21} C_{r}=^{21} C_{10}=^{21} C_{11}}\end{array}

\frac{a}{^{19}C_9}=\frac{b}{ ^{20} \mathrm{C}_{10}}=\frac{c}{^{21} \mathrm{C}_{11}}

\frac{a}{^{19}C_9}=\frac{b}{\frac{20}{10} \cdot ^{19} \mathrm{C}_9}=\frac{c}{\frac{21}{11} \cdot \frac{20}{10} ^{19} \mathrm{C}_{9}}

\\\frac{a}{1}=\frac{b}{2}=\frac{c}{42 / 11}\\\frac{a}{11}=\frac{b}{22}=\frac{c}{42}

Correct Option (1)

View Full Answer(1)
Posted by

Kuldeep Maurya

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If the sum of the coefficients of all even powers of x in the product (1+x+x^{2}+....+x^{2n})(1-x+x^{2}-x^{3}+....+x^{2m}) is 61, then n is equal to _________.
Option: 1 30
Option: 260
Option: 315
Option: 4 45
 

\text { Let } (1+x+x^{2}+....+x^{2n})(1-x+x^{2}-x^{3}+....+x^{2n})=a_{0}+a_{1} x+a_{2} x^{2}+\ldots \ldots

\\Put \,\, x=1 \\ (2 n+1).1 =a_{0} + a_{1} + a_{2}+ \ldots \ldots \\ Put\, x =-1 \\ 1.(2 n+1)= a_{0} - a_{1} + a_{2}+\ldots \ldots \\ From (i)+(ii) \\ 4 n+2 =2 (a_{0}+a_{2}+\ldots ) \\ So,\,\, 2 n+1=61 \\ \Rightarrow n=30

View Full Answer(1)
Posted by

Kuldeep Maurya

If \alpha and \beta be the coefficients of x^{4} and x^{2} respectively in the expansion of  \left ( x+\sqrt{x^{2}-1} \right )^{6}+\left ( x-\sqrt{x^{2}-1} \right )^{6}, then : 
Option: 1 \alpha +\beta =30
Option: 2 \alpha -\beta =-132
Option: 3 \alpha +\beta =60
Option: 4 \alpha -\beta =60
 

We know

\mathrm{(x+y)^{n}+(x-y)^{n}=2\left[^{n} C_{0}\; x^{n}\; y^{0}+^{n} C_{2} \;x^{n-2}\; y^{2}+^{n} C_{4}\; x^{n-4} \;y^{4}+\ldots .\right]}

 

Now,

\left ( x+\sqrt{x^{2}-1} \right )^{6}+\left ( x-\sqrt{x^{2}-1} \right )^{6}

={2\left[^{6} \mathrm{C}_{0} \mathrm{x}^{6}+^{6} \mathrm{C}_{2} \mathrm{x}^{4}\left(\mathrm{x}^{2}-1\right)+^{6} \mathrm{C}_{4} \mathrm{x}^{2}\left(\mathrm{x}^{2}-1\right)^{2}+^{6} \mathrm{C}_{6}\left(\mathrm{x}^{2}-1\right)^{3}\right]} \\ {\quad=2\left[\mathrm{x}^{6}+15\left(\mathrm{x}^{6}-\mathrm{x}^{4}\right)+15 \mathrm{x}^{2}\left(\mathrm{x}^{4}-2 \mathrm{x}^{2}+1\right)+\left(\mathrm{x}^{6}-1-3 \mathrm{x}^{4}+3 \mathrm{x}^{2}\right)\right]} \\ {\quad=2\left(32 \mathrm{x}^{6}-48 \mathrm{x}^{4}+18 \mathrm{x}^{2}-1\right)} \\ {\quad\alpha=-96 \text { and } \beta=36} \\ {\therefore \quad \alpha-\beta=-132}Correct Option (2)

View Full Answer(1)
Posted by

vishal kumar

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

The number of ordered pairs (r,k) for which 6\cdot ^{35}C_{r}=(k^{2}-3)\cdot ^{36}C_{r+1}, where k is an integer, is :
Option: 1 4
Option: 2 6
Option: 3 2
Option: 4 3
 

As we have learnt

 ^{n} C_{r}=\frac{n}{r} \cdot^{n-1} C_{r-1}

   

Now, 

^{36}C_{r+1} (k^{2}-3)={^{35}C_{r}}\times {6}

\frac{36}{r+1}. ^{35}C_{r} (k^{2}-3)={^{35}C_{r}}\times {6}

{k^{2}-3=\frac{r+1}{6} \Rightarrow k^{2}=3+\frac{r+1}{6}}

r should be less than or equal to 35

Hence for k to be an integer, r can be 5 and 35

For r=5 we get k = -2, 2

For r=35 we get k=-3,3

We get 4 ordered pair (5,-2), (5,2), (35,-3), (35, 3)

Correct Option (1)

View Full Answer(1)
Posted by

Ritika Jonwal

The coefficient of x^{7} in the expression (1+x)^{10}+x(1+x)^{9}+x^{2}(1+x)^{8}+....+x^{10} is :
Option: 1 420
Option: 2 330
Option: 3 210
Option: 4 120
 

Binomial Theorem

(x+y)^{n}=^{n} C_{0} x^{n}+^{n} C_{1} x^{n-1} y+^{n} C_{2} x^{n-2} y^{2}+\cdots+^{n} C_{n} y^{n}\;\;where,\;n\in \mathbb{N}

 

Now,

Given series S is a GP, with a = (1+x)10 , r = x/(1+x), n = 11

So, S = \frac{(1+x)^{10} \left ( \frac{x}{1+x}^{11}-1 \right )}{(\frac{x}{1+x})-1}

= (1+x)11 - x11

Hence coefficient of x7 is 11C= 330

Correct option (2)

View Full Answer(1)
Posted by

Ritika Jonwal

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


\sum_{k=0}^{20}\left({ }^{20} \mathrm{C}_{\mathrm{k}}\right)^{2} is equal to :
Option: 1 { }^{40} \mathrm{C}_{21}
Option: 2 { }^{41} \mathrm{C}_{20}
Option: 3 { }^{40} C_{20}
Option: 4 { }^{40} C_{19}

s= \sum_{k= 0}^{20}\left (\, ^{20}C_{k} \right )^{2}= \, ^{20}C_{0}\: ^{2}+ \, ^{20}C_{1}\: ^{2}+ \, ^{20}C_{2}\: ^{2}+\cdots ^{20}C_{20}\, ^{2}
it is same as coefficient of x^{20} in the expansion of \left ( 1+x \right )^{20}\left ( x+1 \right )^{20}
= coeff\cdot of\, x^{20}\pi\left ( 1+x \right )^{40}
= \, ^{40}C_{20}
option (3)

View Full Answer(1)
Posted by

Kuldeep Maurya

If the sum of the coefficients in the expansion of (x+y)^{\mathrm{n}}\: \: is \: \: 4096, then the greatest coefficient in the expansion is__________
 

Sum of coefficients = 2^{n}=4096
                               \Rightarrow n= 12

greatest\: coefficient= \, ^{12}C_{6} = 924
                                             

View Full Answer(1)
Posted by

Kuldeep Maurya

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

If the coefficient of a^{7} b^{8} in the expansion of (a+2 b+4 a b)^{10} \text { is } K \cdot 2^{16} , then \mathrm{K}  is equal to _____________.
 

General Term  = \frac{10!}{p!q!r!}(a)^{p}(2p)^{q}(4ab)^{r}\\

                     =\frac{10!}{p!q!r!}2^{q+2r}a^{p+r}b^{q+r}\\

where\; p+q+r=10\\   .......(1)

p+r=7\\                          .......(2)

and\; q+r=8\\                ........(3)

(2)+(3)-(1)\Rightarrow r=5, So\; p=2,q=3\\

Coefficient=\frac{10!}{5!3!2!}\times2^{3+2\times5}\\

                          =\frac{10\times9\times8\times7\times6}{3\times2\times2}\times2^{13}=315\times2^{16}\\

                 \Rightarrow k=315

View Full Answer(1)
Posted by

Kuldeep Maurya

If \left(\frac{3^{6}}{4^{4}}\right) \mathrm{k} ,is the term, independent of x in the binomial expansion of \left(\frac{x}{4}-\frac{12}{x^{2}}\right)^{12}, then \mathrm{k} is equal to_________.
 

General Term T_{r+1}= ^{12}C_{r}\left ( \frac{x}{4} \right )^{12-r}\left ( \frac{-12}{x^{2}} \right )^{r}
Term independent of x
12-r-2r= 0\Rightarrow r= 4
T_{5}= \frac{12!}{4!8!}\times \left ( \frac{1}{4} \right )^{8}\times \left ( -12 \right )^{4}
      = \frac{12\times 11\times 10\times 9}{4\times 3\times 2\times 1}\times \frac{12\times 12\times 12\times 12}{4\times 4\times 4\times4\times4\times4\times4\times4}
      = 55\times \frac{3^{6}}{4^{4}}
\Rightarrow k= 55

View Full Answer(1)
Posted by

Kuldeep Maurya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img