Get Answers to all your Questions

header-bg qa
Filter By

All Questions

Let 'a' be a real number such that the function \mathrm{f}(\mathrm{x})=\mathrm{ax}^{2}+6 \mathrm{x}-15, \mathrm{x} \in \mathbf{R} is increasing in \left(-\infty, \frac{3}{4}\right) and decreasing in \left(\frac{3}{4}, \infty\right). Then the function g(x)=a x^{2}-6 x+15, x \in \mathbf{R} has a
 
Option: 1 \text {local maximum at}\; x=-\frac{3}{4}
Option: 2 \text {local minimum at }\mathrm{x}=-\frac{3}{4}
Option: 3 \text {local maximum at} \; x=\frac{3}{4}
Option: 4 \text {local minimum at} x=\frac{3}{4}

\begin{aligned} &f(x)=a x^{2}+6 x-15 . \\ &f^{\prime}(x)=2 a x+6 . \end{aligned}

f(x) increasing in \left(-\infty, \frac{3}{4}\right) & decreasing in \left(\frac{3}{4}, \infty\right)

f^{\prime}(x)>0 \text { in }\left(-\infty, \frac{3}{4}\right) \& f^{\prime}(x)<0 \text { in }\left(\frac{3}{4}, \infty\right)

As f'(x) is linear, so f^{\prime}(x)=0 \text { at } x=\frac{3}{4}

\begin{aligned} &\Rightarrow \quad 2 \cdot a \cdot\left(\frac{3}{4}\right)+6=0 \\ &\Rightarrow \quad a=-4 . \end{aligned}

Now, g(x)=-4 x^{2}-6 x+15

It is a downward parabola, so it will have maximum at x=\frac{-b}{2 a} \text { (vertex) }

So maximum at x=\frac{-(-6)}{2 \cdot(-4)}=-\frac{3}{4}

Hence, the correct answer is option (1)

View Full Answer(1)
Posted by

Kuldeep Maurya

Find the point on the curve y^{2} = 4x which is nearest to the point (2, 1).

 

$ Let $ (x,y) $ on the $ y^{2} = 4x $ is nearest point to the (2,1)

\\ $ Distance D = $ \sqrt{(x-2)^2+ (y-1)^2} \\ D = \sqrt{(\frac{y^2}{4}{}-2)^2+ (y-1)^2} \\ D = \sqrt{(y^2-8)^2+ 16(y-1)^2}/4 \\ \frac{dD}{dy} = 0 \\\\ \frac{2(y^2-8)(2y)+32(y-1)}{8\sqrt{(y^2-8)^2+ 16(y-1)^2}/4} = 0 \\\\ y^3-8y + 8y-8 = 0 \\\\ y = 2 \Rightarrow x =1 \\

\\\frac{d^2D}{dy^2}_{y = 2}>0

y=2 has minima 

\\ $ Shortest Distance D = $ \sqrt{(1-2)^2+ (2-1)^2} = \sqrt{2} $ unit \\

 

View Full Answer(1)
Posted by

Safeer PP

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Find the slope of tangent to the curvey = 2 cos^{2} (3x) at x = \frac{\pi }{6}

 

 
 
 
 
 

y = 2 cos^{2} (3x)

\\\frac{dy}{dx} =- 2 \times 2 \times \cos (3x) \times \sin (3x) \times 3\\\\ \frac{dy}{dx}_{at x = \frac{\pi}{6}} =- 2 \times 2 \times \cos (\frac{\pi}{2}) \times \sin (\frac{\pi}{2}) \times 3 = 0

Hence the slope of the tangent is zero.

 

View Full Answer(1)
Posted by

Safeer PP

Find the minimum value of (ax + by), where xy = c^{2} 

 

 
 
 
 
 

\\ \text { Given: } y=\frac{c^{2}}{x} \\ $Let P $ =a x+b y \\ P=a x+\frac{b c^{2}}{x} \\ $For critical point value $\frac{d P}{d x}= 0 \\ \frac{dP}{dx} = a-\frac{b c^{2}}{x^{2}}=0 \\ x^{2}=\frac{b c^{2}}{a} \Rightarrow x=\sqrt{\frac{b}{a}} \cdot c \\ $For minima $ \\ \frac{d^2P}{dx^2} = \frac{2bc^2}{x^3} \\ \\ \left.\frac{d^{2} P}{d x^{2}}\right|_{x=\sqrt{\frac{b}{a}}.c}=\frac{2 b c^{2}}{(\sqrt{\frac{b}{a}}.c)^{3}} \\=\frac{2 b }{c}\left[\sqrt{\frac{a}{b}} \right]^{3}>0

\\\text { At } x=\sqrt{\frac{b}{a}} \cdot c $ P has minimum value

\\$ minimum value of P = $ a \sqrt{\frac{b}{a}} \cdot c+ \frac{bc^{2}}{c} \sqrt{\frac{a}{b}}\\=2 \sqrt{a b} \cdot c

View Full Answer(1)
Posted by

Safeer PP

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Find the slope of the tangent to the curve y = 2 \sin^{2} (3x) \text{at} x =\frac{\pi}{6} .

 

\\ y = 2 \sin^{2} (3x) \\

\\\frac{d y}{d x}=4 \sin 3 x \times \cos 3x \times 3 \\\\ \frac{dy }{dx}= 6 \sin 6x \\ \frac{dy }{dx}|_{\text{at} x = \frac{\pi}{6}}= 6 \sin \pi =0 \\\\ \text {Slope of tangent }=0

View Full Answer(1)
Posted by

Safeer PP

If f(x) = x^{ 4} - 10, then find the approximate value of f(2.1).

 

f(x) = x^{ 4} - 10

f(2) = 2^{ 4} - 10 =6

f'(x) = 4x^{ 3}

f'(2) = 4(2)^{ 3} = 32

\begin{aligned} f(2.1) &=f(2)+(0.1) f^{\prime}(2) \\ &=9.2 \end{aligned}

View Full Answer(1)
Posted by

Safeer PP

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


Show that the function f(x) = \frac{x}{3} + \frac{3}{x} decreases in the intervals (-3, 0)\cup (0, 3).

 

f(x) = \frac{x}{3} + \frac{3}{x} 

f'(x) = \frac{1}{3} - \frac{3}{x^2}

For f(x) decreases

\frac{1}{3} - \frac{3}{x^2} <0

\frac{1}{3} < \frac{3}{x^2}

x^2<9

x\epsilon (-3, 0)\cup (0, 3).

View Full Answer(1)
Posted by

Safeer PP

Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its side. Also, find the maximum volume.

 

Let the sides of the rectangle are x cm and y cm.

Perimeter = 36 cm

2x + 2y = 36

y = 18 -x 

\\ \text {Volume of ractnagle when it rotating around one axis }( V)=\pi x^{2} y

V=\pi x^{2}(18-x)

V=\pi\left(18 x^{2}-x^{3}\right)

Diffentiate w.r.t. x

\frac{d V}{d x}=\pi\left(36 x-3 x^{2}\right)

For critical point

\frac{d V}{d x}=\pi\left(36 x-3 x^{2}\right) =0

x(12- x) =0

x =0 \ cm , 1 2 \ cm

For minima and maxima

\frac{d^2 V}{d x^2}=\pi\left(36 -6 x\right)

\frac{d^2 V}{d x^2}_{at x =12}=\pi\left(36 -72\right) <0

It has maximum volume at x = 12 cm.

Hence the dimension of the rectangle is 12cm x 6 cm.

\text { Maximum volume }=\pi x^{2} (18-x)

V_{max}= \pi 12^{2} \times 6 = 864 \pi \mathrm{cm}^{3}

View Full Answer(1)
Posted by

Safeer PP

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Find the intervals on which the function f(x) = (x - 1)^{3} (x - 2)^2 is (a) strictly increasing (b) strictly decreasing.

 

f(x) = (x - 1)^{3} (x - 2)^2

f'(x) = 3(x - 1)^{2} (x - 2)^2 + 2(x - 1)^{3} (x - 2)

f'(x) = (x - 1)^{2} (x - 2)(3x-6 + 2x - 2)

f'(x) = (x - 1)^{2} (x - 2)(5x- 8)

(a) strictly increasing

f'(x) = (x - 1)^{2} (x - 2)(5x- 8)>0

x \in(-\infty, 1) \cup\left(1, \frac{8}{5}\right) \cup(2, \infty)

(b) strictly decreasing.

f'(x) = (x - 1)^{2} (x - 2)(5x- 8)<0

x \in\left(\frac{8}{5}, 2\right)

View Full Answer(1)
Posted by

Safeer PP

Show that the function f defined by f(x) = (x - 1) e^x + 1 is an increasing function for all x > 0.

 

f(x) = (x - 1) e^x + 1

f^{\prime}(x)=x e^{x}

f^{\prime}(x)=x e^{x} >0 $ for all $x>0

f $ is an increasing function for $ x>0

View Full Answer(1)
Posted by

Safeer PP

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img