Get Answers to all your Questions

header-bg qa
Filter By

All Questions

Let f be a polynomial function such that\dpi{100} \small f(3x)= {f}'\left ( x \right ) \cdot{f}''\left ( x \right ), for all \small x\epsilon R Then :
Option: 1 f\left ( 2 \right )+{f}' \left ( 2 \right ) =28

Option: 7 {f}''\left ( 2 \right )-{f}'\left ( 2 \right )=0

Option: 13 {f}''\left ( 2 \right )-f\left ( 2 \right )=4

Option: 19 f\left ( 2 \right )-{f}'\left ( 2 \right )+{f\left }''\left ( 2 \right )=10
 

f(x) is given a polynomial function

Let f(x) having n^{th} degree

f'(x) becomes (n-1)^{th} degree

f''(x) becomes (n-2 )^{th} degree

Now it is given that

f(3x)=f'(x)\cdot f''(x)

If we consider only degree

n=(n-1)+(n-2)\\\Rightarrow n=3

Assume

f(x)=ax^3+bx^2+cx+d

we get

f'(x)=3ax^2+2bx+c and f''(x)=6ax+2b

f(3x)=f'(x)\cdot f''(x)

a(3x)^3+b(3x)^2+c(3x)+d=(3ax^2+2bx+c)\cdot(6ax+2b)

27ax^3+9bx^2+3cx+d=18a^2x^3+18abx^2+x(6ac+4b^2)+2bc

Now Comparing coefficient of x^3

27a=18a^2

a=\frac32

Now Comparing coefficient of x^2

9b=18ab

Here a=0 or b=0

a cannot be zero so b=0

Now Comparing coefficient of x

c=0

Similarly d=0

Hence 

f(x)=\frac32x^3

f'(x)=\frac323x^2=\frac92x^2 and 

f''(x)=\frac326x=9x

f''(2)-f'(2)=\frac92\times4-9\times2=0

Option 2 is correct

View Full Answer(1)
Posted by

vishal kumar

The function f : N → N defined by f\left ( x \right ) = x -5 \left [ \frac{x}{5} \right ] , where N is the set of natural numbers and \left [ x \right ]  denotes the greatest integer less than or equal to x, is :  
Option: 1 one-one and onto.
Option: 2 one-one but not onto.
Option: 3 onto but not one-one.
Option: 4 neither one-one nor onto.  
 

\\f(x)=x-5\left[\frac{x}{5}\right]\\

Taking x in an interval of five natural numbers, we have the following: 

f(x)=\left\{\begin{array}{ll} x-5(0), & 0 \leq x < 5 \\ x-5(1), & 5 \leq x < 10 \\ x-5(2), & 10 \leq x < 15 \\ x-5(3), & 15 \leq x < 20 \end{array}\right.

Therefore, here, x ∈N. hence, f(x) is neither a one-one function nor onto function.

View Full Answer(1)
Posted by

vishal kumar

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The inverse function of f(x)=\frac{8^{2x}-8^{-2x}}{8^{2x}+8^{-2x}},x\epsilon (-1,1), is
Option: 1 \frac{1}{4}(\log _{8}e)\log _{e}\left ( \frac{1-x}{1+x} \right )
Option: 2 \frac{1}{4}(\log _{8}e)\log _{e}\left ( \frac{1+x}{1-x} \right )
Option: 3 \frac{1}{4}\log _{e}\left ( \frac{1+x}{1-x} \right )
Option: 4 \frac{1}{4}\log _{e}\left ( \frac{1-x}{1+x} \right )
 

\\f(x)=\frac{8^{2 x}-8^{-2 x}}{8^{2 x}+8^{-2 x}} \\ f(x)=\frac{8^{4 x}-1}{8^{4 x}+1} \text{put }8^{4 x}=t \\ y=\frac{t-1}{t+1}\\ {y t+y=t-1} \\ {\frac{y+1}{1-y}=t} \\ {\frac{y+1}{1-y}=8^{4 x}}\\ ln\left(\frac{y+1}{1-y}\right)=4 x \ln 8 \quad

\\x=\frac{1}{4 \ln 8} \ln \left(\frac{y+1}{1-y}\right)\\\\f^{-1}(x)=\frac{1}{4 \ln 8} \ln \left(\frac{x+1}{1-x}\right)\\

Correct Option (2)

View Full Answer(1)
Posted by

Kuldeep Maurya

If g(x)=x^{2}+x-1 and  (gof)(x)=4x^{2}-10x+5, then f\left ( \frac{5}{4} \right ) is equal to:
Option: 1 -\frac{3}{2}
Option: 2 -\frac{1}{2}
Option: 3 \frac{1}{2}
Option: 4 \frac{3}{2}
 

\begin{align*} g(x)&=x^2+x-1 \\ gof(x)&= 4x^2-10x+5\\ f(x)&= ax+b\\ gof(x)&= (ax+b)^2+ax+b-1\\ gof(x)&= a^2x^2+b^2+2axb+ax+b-1 = 4x^2-10x+5\\ \implies a^2x^2&+x(2ab+a)+b^2+b-1=4x^2-10x+5\\ \end{align*}

Therefore , a^2=4, \ 2ab+a = -10, \ b^2+b-1=5

Solving the above equations, a=2, \ b = -3,

Therefore,

 f(x)=2x-3 \\ f\left(\frac{5}{4}\right)= 2 \times \frac{5}{4}-3

                 =\frac{-1}{2} 

Correct option (2)

View Full Answer(1)
Posted by

Kuldeep Maurya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

If A= \left ( x\epsilon \mathbf{\textbf{R}} :\left | x \right |<2\right ) and B= \left ( x\epsilon \mathbf{\textbf{R}} :\left | x-2 \right |\geqslant 3\right ); then:
Option: 1 A-B=[-1,2)
Option: 2  B-A=\textbf{R}-(-2,5)
Option: 3 A\cup B=\textbf{R}-(2,5)
Option: 4  A\cap B=(-2,-1)
 

\begin{array}{l}{A=\{x: x \in(-2,2)\}} \\ {B=\{x: x \in(-\infty,-1] \cup[5, \infty)\}} \\ {A \cap B=\{x: x \in(-2,-1]\}} \\ {A \cup B=\{x: x \in(-\infty, 2) \cup[5, \infty)\}} \\ {A-B=\{x: x \in(-1,2)\}} \\ {B-A=\{x: x \in(-\infty,-2] \cup[5, \infty)\}}\end{array}

Correct Option 2

View Full Answer(1)
Posted by

avinash.dongre

Let f:(1,3)\rightarrow R be a function defined by f(x)=\frac{x\left [ x \right ]}{1+x^{2}}, where \left [ x \right ] denotes the greatest integer \leq x. Then the range of f is :
Option: 1 \left ( \frac{2}{3},\frac{3}{5} \right ]\cup \left ( \frac{3}{4},\frac{4}{5} \right )      
   
Option: 2 \left ( \frac{2}{5},\frac{4}{5} \right ]

Option: 3 \left ( \frac{3}{5},\frac{4}{5} \right )

Option: 4 \left (\frac{2}{5},\frac{1}{2} \right )\cup \left ( \frac{3}{5},\frac{4}{5} \right ]
 

 

 

Piecewise function -


Greatest integer function

The function f: R \small \rightarrow R defined by f(x) = [x], x \small \in R assumes the  value of the greatest integer less than or equal to x. Such a functions called the greatest integer function.

eg;

[1.75] = 1

[2.34] = 2

[-0.9] = -1

[-4.8] = -5


 

From the definition of [x], we

can see that

[x] = –1 for –1 \small \leq x < 0

[x] = 0 for 0 \small \leq x < 1

[x] = 1 for 1 \small \leq x < 2

[x] = 2 for 2 \small \leq x < 3 and

so on.

Properties of greatest integer function:

i) [x] ≤ x < [x] + 1

ii) x - 1 < [x] < x

iii) I ≤ x < I+1 ⇒ [x] = I where I belongs to integer.

iv) [[x]]=[x]v)

v) [x] + [-x] = \left\{\begin{matrix} 0, &if &x & belongs \; to & integer \\ -1, & if &x & doesn't \;belongs \;to & integer \end{matrix}\right.

 

vi) [x] + [-x] = 2x if x belongs to integer

          2[x] + 1 if x doesn’t belongs to integer

-

 

 

Domain of function, Co-domain, Range of function -

All possible values of x for f(x) to be defined is known as a domain. If a function is defined from A to B i.e. f: A?B, then all the elements of set A is called Domain of the function. 

 

If a function is defined from A to B i.e. f: A?B, then all the elements of set B are called Co-domain of the function. 

 

The set of all possible values of  f(x) for every x belongs to the domain is known as Range.

 

For example, let A = {1, 2, 3, 4, 5} and B = {1, 4, 8, 16, 25, 64, 125}. The function f : A -> B is defined by f(x) = x3. So here,

Domain : Set A

Co-Domain : Set B

Range : {1, 8, 27, 64, 125}

 

The range can be equal to or less than codomain but cannot be greater than that.

-

 

 

 

 

\\f(x)=\left\{\begin{array}{ll} {\frac{x}{x^{2}+1} ;} & {x \in(1,2)} \\ {\frac{2 x}{x^{2}+1} ;} & {x \in[2,3)} \end{array}\right.\\\therefore \text{f(x) is a decreasing function }\\\begin{aligned} &\therefore \quad \mathrm{y} \in\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{6}{10}, \frac{4}{5}\right]\\ &\Rightarrow \quad y \in\left(\frac{2}{5}, \frac{1}{2}\right) \cup\left(\frac{3}{5}, \frac{4}{5}\right] \end{aligned}

Correct Option (4)

View Full Answer(1)
Posted by

vishal kumar

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


Let S be the set of all real roots of the equation,  3^{x}(3^{x}-1)+2=\left | 3^{x}-1 \right |+\left | 3^{x}-2 \right |. Then S _____.
Option: 1 is a singleton set
Option: 2 is an empty set
Option: 3 contains at least four elements
Option: 4 contains exactly two elements
 

\text{Put }3^x=t

\\t\left(t-1\right)+2=\left|t-1\right|+\left|t-2\right|\\t^2-t+2=\left|t-1\right|+\left|t-2\right|

Only one point of intersection to the right of y-axis (we need postive t as 3x > 0)

Hence, singleton set

Correct Option (1)

View Full Answer(1)
Posted by

vishal kumar

Let X=\left \{ n\; \epsilon\; N:1\leq n\leq 50 \right \}. If A=\left \{ n\; \epsilon\; X:n\; is\; multiple\; of\; 2 \right \} and B=\left \{ n\; \epsilon\; X:n\; is\; multiple\; of\; 7 \right \}, then the number of elements in the smallest subset of X containing both A and B is
Option: 1 29
Option: 2 45
Option: 3 32
Option: 4 16
 

A = {2, 4, 6, 8, 10, ....., 50}

B = {7, 14, 21, 28, 35, 42, 49}

n(A \cap B) = {14, 28, 42}

Smallest subset of X which has all elements of A and B is the union of A and B

And we know

\\\mathrm{n(A\cup B)=n(A)+n(B)-n(A\cap B)}= 25+7-3=29

View Full Answer(1)
Posted by

Ritika Jonwal

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The sum of the roots of the equation, x+1-2 \log _{2}\left(3+2^{x}\right)+2 \log _{4}\left(10-2^{-x}\right)=0, is :
Option: 1 \log _{2} 14
Option: 2 \log _{2} 12
Option: 3 \log _{2} 13
Option: 4 \log _{2} 11

x+1-2\log _{2}\left ( 3+2^{x} \right )+2\log_{4}\left ( 10-2^{-x} \right )= 0\\

\Rightarrow log_{2}\left ( 3+2^{x} \right )^{2}-\log_{2}\left ( 10 -2^{-x}\right )=x+1\\

\Rightarrow \log_{2}\left ( \frac{\left ( 2^{x} \right )^{2}+6.2^{x}+9}{10-2^{-x}} \right )= x+1\\

Raise to the power of 2, take  2^{x}=t

\Rightarrow \frac{t^{2}+6t+9}{10-\frac{1}{t}}=2t\\

\Rightarrow t^{2}+6t+9=20t-2\\

\Rightarrow t^{2}-14t+11=0< ^{t_{1}=2^{x_{1}}}_{t_{2}=2^{x_{2}}}\\

     t_{1}\cdot t_{2}=2^{x_{1}+x_{2}}=11\\

\Rightarrow x_{1}x_{2}=\log_{2}11

View Full Answer(1)
Posted by

Kuldeep Maurya

Let f: \mathbf{N} \rightarrow \mathbf{N} be a function such that f(m+n)=f(m)+f(n) for every m, n \in \mathbf{N}$. If $f(6)=18, then f(2) \cdot f(3) is equal to :
Option: 1 54
Option: 2 6
Option: 3 36
Option: 4 18

f(m+n)=f(m)+f(n),f(6)=18\\

Put\; m=n=3;\\

f(6)=f(3)+f(3)=18\\

\Rightarrow f(3)=9\\          ....(1)

Put\; m=4,n=2\\

f(6)=f(4)+f(2)=18\\

Also put m=n=2\\

\Rightarrow f(4)=f(2)+f(2)=2f(2)\\

\Rightarrow f(6)=f(2)+f(2)+f(2)=18\\

\Rightarrow 3f(2)=18\Rightarrow f(2)=6\\     ..........(2)

f(2)\cdot f(3)=9\times6=54

View Full Answer(1)
Posted by

Kuldeep Maurya

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img