Get Answers to all your Questions

header-bg qa

if (x+iy)^{2}=7+24i,  then a value of   (7+\sqrt{-576})^{\frac{1}{2}}-(7-\sqrt{576})^{\frac{1}{2}}\; is  :

  • Option 1)

    -6i

  • Option 2)

    -3i

  • Option 3)

    2i

  • Option 4)

    6

 

Answers (2)

best_answer

As we learnt in

Square Root of a Complex Number -

\sqrt{z}=a+ib \ where\ z=x+iy \ is \ calcuated \ by\ equating\ real\ and \ imaginary \ parts \ of\ : \ x+iy=(a+ib)^2

-

 

 We have to find (7+24i)^{1/2}-(7-24i)^{1/2}

Now  (x+iy)^{2}=7+24i

    x+iy=\sqrt{7+24i}

and x-iy=\sqrt{7-24i}   (Put - i at the place of i)

\therefore\ \ i2y=\sqrt{7+24i}-\sqrt{7-24i}

Now x2 - y2 + i 2xy = 7 + 24 i

\therefore\ \ x^{2}-y^{2}=7, \ \; xy = 12

Solve for x & y,   it is 

\therefore\ x=\pm4\ \; &\ \; y = \pm 3

\therefore\ \; i2y=\pm 6i

\therefore\ \; -6i

Correct option is 1.

 


Option 1)

-6i

This is the correct option.

Option 2)

-3i

This is an incorrect option.

Option 3)

2i

This is an incorrect option.

Option 4)

6

This is an incorrect option.

Posted by

solutionqc

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE