Get Answers to all your Questions

header-bg qa

A positive charge ‘q’ of mass ‘m’ is moving along the +x axis. We wish to apply a uniform magnetic field B for time\Deltat so that the charge reverses its direction crossing the y axis at a distance d. Then :

Option: 1

B=\frac{mv}{qd}\: and \: \Delta t= \frac{\pi d}{v}


Option: 2

B=\frac{mv}{2qd}\: and \: \Delta t= \frac{\pi d}{2v}


Option: 3

B=\frac{2mv}{qd}\: and \: \Delta t= \frac{\pi d}{2v}


Option: 4

B=\frac{2mv}{qd}\: and \: \Delta t= \frac{\pi d}{v}


Answers (1)

best_answer

As we discussed in concept 

Time period of charged particle -

T=\frac{2\pi m}{qB}

- wherein

independent of speed of particle 

 

and 

Radius of charged particle -

r=\frac{mv}{qB}=\frac{P}{qB}=\frac{\sqrt{}2mk}{qB}=\frac{1}{B}\sqrt{}\frac{2mV}{q}

-

 

 The applied magnetic field provides the required centripetal force to the charge particle so that it can move in circular path of radius d/2

\therefore qvB=\frac{mv^{2}}{\frac{d}{2}}\, \, \, or\, \, \, B= \frac{2mv}{qd}

\Delta t=\frac{\frac{\pi d}{2}}{v}= > \Delta t=\frac{\pi d }{2v}

Posted by

Nehul

View full answer