# Which of the matrices can be obtained by elementary raw transformation of $\begin{bmatrix} -1 & 0& 3\\ 0&0 & 2\\ 0&-2 & 4 \end{bmatrix}$ ? Option 1) $\begin{bmatrix} 1 & 0& -3\\ 0&0 & 4\\ 0& 1 & 2 \end{bmatrix}$ Option 2) $\begin{bmatrix} 1 & 0& -3\\ 0&0 & 4\\ 0& 1 & -2 \end{bmatrix}$ Option 3) $\begin{bmatrix} 1 & 0& 3\\ 0&0 & 4\\ 0& 1 & 2 \end{bmatrix}$ Option 4) $\begin{bmatrix} 1 & 0& -3\\ 0&0 & 4\\ 0& 1 & -4 \end{bmatrix}$

G gaurav

As we have learnt,

Elementary row (column) transformation -

Multiplying all elements of a row (column) of a matrix by a non-zero scalar

- wherein

$R_{i}\rightarrow kR_{i}\left [ C_{i}\rightarrow kC_{i} \right ]$

$\\*R_1 \rightarrow R_1 \times 1 \\*R_21 \rightarrow R_2\times 2 \\*R_3 \rightarrow R_3 \times -1$

Option 1)

$\begin{bmatrix} 1 & 0& -3\\ 0&0 & 4\\ 0& 1 & 2 \end{bmatrix}$

Option 2)

$\begin{bmatrix} 1 & 0& -3\\ 0&0 & 4\\ 0& 1 & -2 \end{bmatrix}$

Option 3)

$\begin{bmatrix} 1 & 0& 3\\ 0&0 & 4\\ 0& 1 & 2 \end{bmatrix}$

Option 4)

$\begin{bmatrix} 1 & 0& -3\\ 0&0 & 4\\ 0& 1 & -4 \end{bmatrix}$

Exams
Articles
Questions