Get Answers to all your Questions

header-bg qa

 

For each t\epsilon R ,let [t] be the greatest integer less than or equal to t. then 

 

\lim_{x-1+}\frac{\left ( 1-\left | x \right | +\sin\left | 1-x \right |\right )\sin\left ( \frac{\pi }{2}\left [ 1-x \right ] \right )}{\left | 1-x \right |\left | 1-x \right |}

  • Option 1)

     

    equals 1

  • Option 2)

     

    equalss0

  • Option 3)

     

    equals-1

  • Option 4)

     

    doesnot exist

Answers (1)

best_answer

 

Limit of product / quotient -

Limit of product/quotient is the product/quotient of individual limits such that

\lim_{x\rightarrow a}{\left (f(x).g(x) \right )}

=\lim_{x\rightarrow a}{f(x).\lim_{x\rightarrow a}g(x), given that f(x) and g(x) are non-zero finite values

\lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\frac{\lim_{x\rightarrow a}f(x)}{\lim_{x\rightarrow a}g(x)}, given that f(x) and g(x) are non-zero finite values

Also\:\lim_{x\rightarrow a}{kf(x)} 

=k\lim_{x\rightarrow a}{f(x)}

 

-

 

 

Evalution of Trigonometric limit -

\lim_{x\rightarrow a}\:\frac{sin(x-a)}{x-a}=1

\lim_{x\rightarrow a}\:\frac{tan(x-a)}{x-a}=1

put\:\:\:\:\:x=a+h\:\:\:where\:\:h\rightarrow 0

Then\:it\:comes

\lim_{h\rightarrow 0}\:\:\frac{sinh}{h}=\lim_{h\rightarrow 0}\:\:\frac{tanh}{h}=1

\therefore\:\:\:\lim_{x\rightarrow 0}\:\:\frac{sinx}{x}=1\:\;\;and

\therefore\:\:\:\lim_{x\rightarrow 0}\:\:\frac{tanx}{x}=1

-

 

\lim_{x\rightarrow 1^{+}} \frac{\left ( 1 - \left | x \right |+ sin\left | 1 - x \right | sin\left ( \frac{\pi}{2}\left [ 1 - x \right ] \right )\right )}{\left | 1-x \right |\left [ 1-x \right ]}

=\lim_{x\rightarrow 1^{+}} \frac{(1-x) + sin(x-1)}{(x-1)(-1)}sin \left ( \frac{\pi}{2}(-1) \right )

=\lim_{x\rightarrow 1^{+}} \left ( 1 - \frac{sin(x-1)}{x-1} \right )(-1) = 0

 

 


Option 1)

 

equals 1

Option 2)

 

equalss0

Option 3)

 

equals-1

Option 4)

 

doesnot exist

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE