Get Answers to all your Questions

header-bg qa

Evaluate \int \frac{dx}{\sqrt{\left ( x-a \right )\left ( b-x \right )}}

  • Option 1)

    2\sin^{-1}\sqrt{\left ( \frac{x-a}{b-a} \right )}+c

  • Option 2)

    2\cos^{-1}\sqrt{\left ( \frac{x-a}{b-a} \right )}+c

  • Option 3)

    2\tan^{-1}\sqrt{\left ( \frac{x-a}{b-a} \right )}+c

  • Option 4)

    2\tan^{-1}\sqrt{\left ( \frac{x-a}{b-a} \right )}+c

 

Answers (1)

best_answer

As we learnt

Special type of indefinite integration -

Integrals of the form :

(i)f(\sqrt{a^{2}-x^{2}}) , (ii)f(\sqrt{x^{2}-a^{2}})

(iii)f(\sqrt{a^{2}+x^{2}}), (iv)f(a^{2}+x^{2})

(v)f\left ( \sqrt{\frac{a-x}{a+x}}\right ), (vi)f\left ( \sqrt{\frac{a+x}{a-x}}\right )

(vii)f\left ( \sqrt{\frac{x-a}{b-x}} \right ), (viii)f\left ( \sqrt{(x-a)(x-b)}\right )

- wherein

Working rule :

for (i) put x=a\sin \Theta or a \cos \Theta

for (ii) Put x=a\sec \Theta or a \, cosec\Theta

for (iii) and (iv) Put x=a\tan \Theta or a\cot \Theta

for (v) and (vi) Put x=a\cos 2 \Theta

for (vii) and (viii) Put x=a\cos ^{2}\Theta +b\sin ^{2}\Theta

 

 Writing x = acos2q + bsin2q = a + (b - a) sin2q, the given integral becomes

I\; = \;\int {\frac{{2(b - a)\;\sin \theta \cos \theta d\theta \,}}{{{{\left\{ {(a\;{{\cos }^2}\theta \; + \;b\,{{\sin }^2}\theta - a)\;\;\;(a\;{{\cos }^2}\theta \; + \;b\;{{\sin }^2}\theta \; - \;b} \right\}}^{1/2}}}}}

=\int {\frac{{2\left( {b - a} \right)\sin \theta \cos \theta d\theta }}{{\left( {b - a} \right)\sin \theta \cos \theta }}}=\;\left( {\frac{{b - a}}{{b - a}}} \right)\;\;\int {2\;d\theta }

=2\theta +c=2{\sin ^{ - 1}}\sqrt {\left( {\frac{{x - a}}{{b - a}}} \right)} + c

 


Option 1)

2\sin^{-1}\sqrt{\left ( \frac{x-a}{b-a} \right )}+c

Option 2)

2\cos^{-1}\sqrt{\left ( \frac{x-a}{b-a} \right )}+c

Option 3)

2\tan^{-1}\sqrt{\left ( \frac{x-a}{b-a} \right )}+c

Option 4)

2\tan^{-1}\sqrt{\left ( \frac{x-a}{b-a} \right )}+c

Posted by

gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE