Get Answers to all your Questions

header-bg qa

Let S and S' be the foci of an ellipse and B be any one of the extrmities of its minor axis. If \Delta {S}'BS is a right angled triangle with right angle at B and area \left ( \Delta {S}'BS \right )=8\: Sq. units, then the length of a latus rectum of the ellipse is : 

  • Option 1)

    4

     

     

     

  • Option 2)

    2

  • Option 3)

    2\sqrt{2}

  • Option 4)

    4\sqrt{2}

Answers (1)

best_answer

 

Foci of Ellipse -

The two fixed points on the ellipse.

- wherein

 

 

Sum of focal distance -

2a

- wherein

 

=4d=\sqrt{3}\left ( x-25 \right )

tan60=\frac{x+25}{d}

\Rightarrow d=\frac{x+25}{\sqrt{3}}

\sqrt{3}\left ( x-25 \right )=\frac{x+25}{\sqrt{3}}

\Rightarrow x=50m

\Delta BS{S}'=\frac{1}{2}\left ( S{S}' \right )\left ( OB \right )=8

\Rightarrow ae..b=8\Rightarrow b^{2}=8\Rightarrow b=2\sqrt{2}

\Delta BS{S}'=\frac{1}{2}\: \left ( BS \right )\: \left ( B{S}' \right )=8

=\frac{1}{2}(BS)^{2}=\frac{1}{2}a^{2}=8

\Rightarrow a=4

\therefore e=\frac{1}{\sqrt{2}}

length\: of \: lotus\: rectum\: =\frac{2b^{2}}{a}=4???????

 

 

 


Option 1)

4

 

 

 

Option 2)

2

Option 3)

2\sqrt{2}

Option 4)

4\sqrt{2}

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE