Get Answers to all your Questions

header-bg qa

Equation of plane passing through points (0,0,0), (1,-1,1) and (2,2,-2)

Option: 1

x+y+z=0


Option: 2

y-z=0


Option: 3

y+z=0


Option: 4

x+y=0


Answers (1)

best_answer

As we have learned

Plane passing through three points (cartesian form) -

Let the plane passes through

A(x_{1},y_{1},z_{1}),B(x_{2},y_{2},z_{2})\: and \: C(x_{3},y_{3},z_{3})

then the plane is given by

\begin{vmatrix} x-x_{1} &y-y_{1} &z-z_{1} \\ x-x_{2} & y-y_{2} & z-z_{2}\\ x-x_{3}&y-y_{3} & z-z_{3} \end{vmatrix}=0
 

 

- wherein

\underset{AB}{\rightarrow} = \left ( x_{2}-x_{1} \right )\hat{i}+ \left ( y_{2}-y_{1} \right )\hat{j}+ \left ( z_{2}-z_{1} \right )\hat{k}

\underset{AC}{\rightarrow} = \left ( x_{3}-x_{1} \right )\hat{i}+ \left ( y_{3}-y_{1} \right )\hat{j}+ \left ( z_{3}-z_{1} \right )\hat{k}

\vec{n}=\underset{AB}{\rightarrow} \times\underset{AC}{\rightarrow}

\left ( \vec{r} -\vec{a}\right )\cdot\underset{AB}{\rightarrow} \times\underset{AC}{\rightarrow}= 0

 

Equation of plane passing through (0,0,0) is 

ax + by + cz = 0 

Here , 

(1,-1,1)  and (2,2,-2)

satisfy it 

a-b +c = 0   and  2a + 2b - 2c = 0 

a-b +c = 0   and  a + b - c = 0 

a = 0 , b = 0 

plane is 

y + z = 0 

 

 

 

 

Posted by

Pankaj

View full answer