Get Answers to all your Questions

header-bg qa

Find A - B if A=\left[\begin{array}{lll}{8} & {6} & {5} \\ {5} & {6} & {1}\end{array}\right], B=\left[\begin{array}{lll}{5} & {3} & {4} \\ {2} & {4} & {0}\end{array}\right]

Option: 1

A-B=\left[\begin{array}{lll}{3} & {3} & {1} \\ {2} & {2} & {1}\end{array}\right]


Option: 2

A-B=\left[\begin{array}{lll}{3} & {1} & {3} \\ {3} & {1} & {2}\end{array}\right]


Option: 3

A-B=\left[\begin{array}{lll}{-3} & {-3} & {-1} \\ {-3} & {-2} & {-1}\end{array}\right]


Option: 4

A-B=\left[\begin{array}{lll}{3} & {3} & {1} \\ {3} & {2} & {1}\end{array}\right]


Answers (1)

best_answer

As the order of both matrices are same (2 x 3), so we can subtract them

A=\left[\begin{array}{lll}{8} & {6} & {5} \\ {5} & {6} & {1}\end{array}\right], B=\left[\begin{array}{lll}{5} & {3} & {4} \\ {2} & {4} & {0}\end{array}\right]

\\A-B=\left[\begin{array}{lll}{8-5} & {6-3} & {5-4} \\ {5-2} & {6-4} & {1-0}\end{array}\right]\\\\ A-B=\left[\begin{array}{lll}{3} & {3} & {1} \\ {3} & {2} & {1}\end{array}\right]

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions