Get Answers to all your Questions

header-bg qa

Find the gravitational force of attraction between the ring and sphere as shown in the diagram, where the plane of the ring is perpendicular to the line joining the centres. If \sqrt{8} R is the distance between the centres of a ring (of mass 'm') and sphere (mass 'M') where both have equal radius 'R'.
 
Option: 1 b'\\frac{1}{3\\sqrt{8}}.\\frac{GMm}{R^{2}}'
Option: 2 b'\\frac{\\sqrt{8}}{9}.\\frac{GmM}{R}'
Option: 3 b'\\frac{\\sqrt{8}}{27}.\\frac{GmM}{R^{2}}\r\n\r\n '
Option: 4 b'\\frac{2\\sqrt{2}}{3}.\\frac{GMm}{R^{2}}'

Answers (1)

best_answer

\\ \text{Gravitational field of ring} \\ =-\frac{G m x}{\left(R^{2}+x^{2}\right)^{3 / 2}}$ \\ Force between sphere \& ring $=\frac{\operatorname{GmM}(\sqrt{8} \mathrm{R})}{\left(\mathrm{R}^{2}+8 \mathrm{R}^{2}\right)^{3 / 2}}$ $=\frac{\mathrm{GmM}}{\mathrm{R}^{2}} \times \frac{\sqrt{8}}{27}

Posted by

Deependra Verma

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE