Using elementary operations to compute the inverse of matrix of order 3 -
Algorithm for Finding the lnverse of a Non singular 3 x 3 Matrix by Elementary Row Transformations
- Introduce unity at the intersection of first row and first column either by interchanging two rows or by adding a constant multiple of elements of some other row to first row.
- After introducing unity at (1,1) place introduce zeros at all other places in first column.
- Introduce unity at the intersection of 2nd row and 2nd column with the help of 2nd and 3rd row.
- Introduce zeros at all other places in the second column except at the intersection of 2nd row and 2nd column.
- Introduce unity at the intersection of 3rd row and third column.
- Finally introduce zeros at all other places in the third column except at the intersection of third row and third column.
-
Use AA-1=I
![\begin{bmatrix}\:\:1&1&2\\ \:\:2&3&5\\ -1&0&2\end{bmatrix}=\begin{bmatrix}1&0&0\\ 0&1&0\\ 0&0&1\end{bmatrix}A\\\\\begin{array}{l}{\text { Swap matrix rows: } R_{1} \leftrightarrow R_{2}} \\ {\left[\begin{array}{ccc}{2} & {3} & {5} \\ {1} & {1} & {2} \\ {-1} & {0} & {2} \end{array}\right]=\left[\begin{array}{ccc} {0} & {1} & {0} \\ {1} & {0} & {0} \\ {0} & {0} & {1}\end{array}\right]}\end{array}A\\ R_2\:\leftarrow \:R_2-\frac{1}{2}\cdot \:R_1\\ \begin{bmatrix}2&3&5\\ 0&-\frac{1}{2}&-\frac{1}{2}\\ -1&0&2\end{bmatrix}=\begin{bmatrix} 0&1&0\\1&-\frac{1}{2}&0\\0&0&1\end{bmatrix}A](https://learn.careers360.com/latex-image/?%5Cbegin%7Bbmatrix%7D%5C%3A%5C%3A1%261%262%5C%5C%20%5C%3A%5C%3A2%263%265%5C%5C%20-1%260%262%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D1%260%260%5C%5C%200%261%260%5C%5C%200%260%261%5Cend%7Bbmatrix%7DA%5C%5C%5C%5C%5Cbegin%7Barray%7D%7Bl%7D%7B%5Ctext%20%7B%20Swap%20matrix%20rows%3A%20%7D%20R_%7B1%7D%20%5Cleftrightarrow%20R_%7B2%7D%7D%20%5C%5C%20%7B%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%7B2%7D%20%26%20%7B3%7D%20%26%20%7B5%7D%20%5C%5C%20%7B1%7D%20%26%20%7B1%7D%20%26%20%7B2%7D%20%5C%5C%20%7B-1%7D%20%26%20%7B0%7D%20%26%20%7B2%7D%20%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%20%7B0%7D%20%26%20%7B1%7D%20%26%20%7B0%7D%20%5C%5C%20%7B1%7D%20%26%20%7B0%7D%20%26%20%7B0%7D%20%5C%5C%20%7B0%7D%20%26%20%7B0%7D%20%26%20%7B1%7D%5Cend%7Barray%7D%5Cright%5D%7D%5Cend%7Barray%7DA%5C%5C%20R_2%5C%3A%5Cleftarrow%20%5C%3AR_2-%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5C%3AR_1%5C%5C%20%5Cbegin%7Bbmatrix%7D2%263%265%5C%5C%200%26-%5Cfrac%7B1%7D%7B2%7D%26-%5Cfrac%7B1%7D%7B2%7D%5C%5C%20-1%260%262%5Cend%7Bbmatrix%7D%3D%5Cbegin%7Bbmatrix%7D%200%261%260%5C%5C1%26-%5Cfrac%7B1%7D%7B2%7D%260%5C%5C0%260%261%5Cend%7Bbmatrix%7DA)








hence, 
option A is correct
View full answer