Get Answers to all your Questions

header-bg qa

find the length of the tangent from Point P(0,0) on the circle 2x^2+2y^2+8x-8y+8=0

Option: 1

2


Option: 2

2\sqrt{2}


Option: 3

4


Option: 4

8


Answers (1)

best_answer

 

 

Power of a point wrt Circle -

Power of a point wrt Circle

The power of a point P(a, b) with respect to the circle \mathrm{S:x^2+y^2+2gx+2fy+c=0}

is S1, where \mathrm{S_1:a^2+b^2+2ga+2fb+c=0}.

 

 

\mathrm{PA \cdot PB=(PT)^2=S_1}

\text{From above concept }\\ \text{length of tangent =}\sqrt{(S_1)}\\ \text{Remember: Factor of }x^2 is \ 1 \\ \text{Given }2x^2+2y^2+8x-8y+8=0\\\Rightarrow x^2+y^2+4x-4y+4=0\\ \text{length of tangent =}\sqrt{(S_1)}=\sqrt{4}=2

Posted by

seema garhwal

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions