Get Answers to all your Questions

header-bg qa

Find the total number of terms in the expansion of \mathrm{\left (x_1+x_2+x_3+x_4+x_5 \right )}^8

Option: 1

495


Option: 2

792


Option: 3

330


Option: 4

715


Answers (1)

best_answer

Multinomial Theorem

The number of distinct terms in the multinomial expansion \mathrm{\left (x_1+x_2+x_3+........+x_k \right )}^n is  n + k - 1Ck - 1

 

Now,

Total number of terms is 

^{n + k - 1}C_{k - 1}=\;^{8 + 5 - 1}C_{5 - 1}\\\\\;^{12}C_{4}=\frac{12!}{4!8!}=\frac{12\times11\times10\times9}{4\times3\times2\times1}=495

 

hence option A is correct

Posted by

Gautam harsolia

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions