Get Answers to all your Questions

header-bg qa

Find the value of C_{0}+3 C_{1}+5 C_{2}+\ldots \ldots+(2 n+1) C_{n}.

 If \begin{array}{l}{ \mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{n} }\end{array} be binomial coefficients in the expansion of (1+x)^n

Option: 1

(n+1) 2^{n}


Option: 2

(2n+1) 2^{n}


Option: 3

(2n-1) 2^{2n-1}


Option: 4

(2n+1) 2^{2n+1}


Answers (1)

best_answer

As we learnt

C_{1}+2 \cdot C_{2}+3 \cdot C_{3}+---+n \cdot C_{n}=\sum_{r=0}^{n} r \cdot{ }^{n} C_{r}=n \cdot 2^{n-1}

and

C_{0}+C_{1}+C_{2}+C_{3}+----+C_n= \sum_{r=0}^{n} (^{n} C_{r}) = 2^{n}

 

Now,

Given expression can be written as 

\sum_{r=0}^{n} (2r+1) ^{n} C_{r}

=2\sum_{r=0}^{n} (r) .^{n} C_{r} + \sum_{r=0}^{n} (^{n} C_{r})

= 2.n.2^{n-1} + 2^n\\ = (n+1)2^n

 

Posted by

Sanket Gandhi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions