Get Answers to all your Questions

header-bg qa

Find the value of \int_{0}^{1} x^{2}\left(1+3 x^{3}\right)^{5} d x

Option: 1

\frac{457}{3}


Option: 2

\frac{457}{6}


Option: 3

\frac{455}{6}


Option: 4

\frac{455}{3}


Answers (1)

best_answer

Let u=1+3 x^{3}

\begin{array}{l}{d u=9 x^{2} d x}\end{array}

\frac{1}{9} d u=x^{2} d x

To adjust the limits of integration:

When x=0, u=1+3(0)=1

and when x=1, u=1+3(1)=4 

Then

\int_{0}^{1} x^{2}\left(1+3 x^{3}\right)^{5} d x=\frac{1}{9} \int_{1}^{4} u^{5} d u

\frac{1}{9} \int_{1}^{4} u^{5} d u=\left.\left(\frac{1}{9}\right)\left(\frac{u^{6}}{6}\right)\right|_{1} ^{4}=\frac{1}{54}\left[(4)^{6}-(1)^{6}\right]=\frac{455}{6}

Posted by

Sayak

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions