Get Answers to all your Questions

header-bg qa

Equation of curves such that tangent and normal drawn at any point of which are of equal length, is

  • Option 1)

    y =3x +c

  • Option 2)

    y =2x +c

  • Option 3)

    y =4x +c

  • Option 4)

    y =x +c

 

Answers (1)

best_answer

As we have learnt,

 

Length of Normal -

y\sqrt{1+\left ( \frac{dy}{dx} \right )^{2}}

- wherein

 

 

y\sqrt{1+\left ( \frac{dx}{dy} \right )^{2}}=y\sqrt{1+\left ( \frac{dy}{dx} \right )^{2}}

Squaring both sides we have 

\left(\frac{dx}{dy} \right )^{2}=\left ( \frac{dy}{dx} \right )^{2} \\*\Rightarrow \frac{dx}{dy} = \pm \frac{dy}{dx} \\*\Rightarrow \frac{dy}{dx} = 1 \; or\;-1

\therefore Curves are either  y = x + c \;or\; y = -x + c


Option 1)

y =3x +c

Option 2)

y =2x +c

Option 3)

y =4x +c

Option 4)

y =x +c

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE