Get Answers to all your Questions

header-bg qa

If the sum of the first 15 terms of the series 3+7+14+24+37+.......is 15K, then k is equal to :

  • Option 1)

    126

  • Option 2)

    122

  • Option 3)

    81

  • Option 4)

    119

 

Answers (1)

best_answer

Use

Summation of series of natural numbers -

\sum_{k=1}^{n}K= \frac{1}{2}n\left ( n+1 \right )
 

- wherein

Sum of first n natural numbers

1+2+3+4+------+n= \frac{n(n+1)}{2}

 

 and

 

Summation of series of natural numbers -

\sum_{k=1}^{n}K^{2}= \frac{1}{6}n\left ( n+1 \right )\left ( 2n+1 \right )
 

- wherein

Sum of  squares of first n natural numbers

1^{2}+2^{2}+3^{2}+4^{2}+------+n^{2}= \frac{n(n+1)\left ( 2n+1 \right )}{6}

 

 

3+7+14+24+37 ----------15K

Let Tn=an2+bn+c            because difference is in A.P: [4,7,10,13-----------------]

at n=1     3=a+b+c ------(i)

    n=2      7=4a+2b+c -------(ii)

    n=3      14=9a+3b+c  -------(iii)

    (ii)-(i)    \therefore 4=3a+b   -------- (iv)

    (iii)-(ii)      7=5a+b -------- (v)

    (v)-(iv)      3=2a

                    a=\frac{3}{2}

 

from (i) b+c=3-\frac{3}{2}=\frac{3}{2}

from (ii) 2b+c=7-6=1

\therefore b=1-\frac{3}{2}=-\frac{1}{2}

\therefore c=1-\frac{3}{2}+\frac{1}{2}=\frac{4}{2}=2

\therefore T_{n}=\frac{3}{2}n^{2}-\frac{1}{2}n+2

 

S_{n}=\sum T_{n}=\frac{3}{2}\sum n^{2}-\frac{1}{2}\sum n+2\sum 1

      =\frac{3}{2}\cdot \frac{n(n+1)(2n+1)}{6}-\frac{1}{2}\cdot \frac{n(n+1)}{2}+2n

 

Put n=15   \frac{3}{12}\times 15\times 16\times 31-\frac{1}{4}\times 15\times 16+30

               =60\times 31-60+30

               =60\times 30+30

               =61\times30

               =15K (given)

 

\therefore K=\frac{61\times 30}{15}=122


Option 1)

126

This option is incorrect

Option 2)

122

This option is correct

Option 3)

81

This option is incorrect

Option 4)

119

This option is incorrect

Posted by

solutionqc

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE