Q

# Help me please, - Binomial theorem and its simple applications - JEE Main

The coefficient of $x^{10}$ in the expansion of $\left ( 1+x \right )^{2}\left ( 1+x^{2} \right )^{3}\left ( 1+x^{3} \right )^{4}$ is equal to :

• Option 1)

52

• Option 2)

56

• Option 3)

50

• Option 4)

44

98 Views

As we learned

Expression of Binomial Theorem -

$\left ( x+a \right )^{n}= ^{n}\! c_{0}x^{n}a^{0}+^{n}c_{1}x^{n-1}a^{1}+$$^{n}c_{2}x^{n-2}a^{2}x-----^{n}c_{n}x^{0}a^{n}$

- wherein

for n  +ve integral .

The expresion is

$\left ( 1+x^{2} \right )^{2}\left ( 1+x^{2} \right )^{3}\left ( 1+x^{2} \right )^{4}$

$\Rightarrow \: \left ( 1+2x+x^{2} \right )\left ( 1+x^{2} \right )^{3}\left ( 1+x^{3} \right )^{4}$

$\Rightarrow \: \left ( 1+2x+x^{2} \right )\left ( 1+^{4}C_{1}x^{3}+^{4}C_{2}x^{6}+^{4}C_{3}x^{9}+^{4}C_{4}x^{12} \right )\left ( 1+x^{2} \right )^{3}$

Coeff of $x^{10}\Rightarrow \: 1\times ^{4}C_{2}\times ^{3}C_{2}+2\times ^{4}C_{1}\times ^{3}C_{3}+2\times ^{4}C_{3}\times 1+1\times ^{4}C_{2}\times ^{3}C_{1}$

$\Rightarrow \: 18+8+8+18$

$\Rightarrow \: 52$

Option 1)

52

Option 2)

56

Option 3)

50

Option 4)

44

Exams
Articles
Questions