# If $5,5r,5r^{2}$ are the length of the sides of a triangle, then r cannot be equal to:Option 1)  3/4Option 2)  5/4Option 3)  7/4Option 4)  3/2

$\alpha = \frac{-b+\sqrt{b^{2}-4ac}}{2a}$

$\beta = \frac{-b-\sqrt{b^{2}-4ac}}{2a}$

- wherein

$ax^{2}+bx+c= 0$

is the equation

$a,b,c\in R,\: \: a\neq 0$

Quadratic Expression ax^2 + bx + c is non negative -

$ax^{2}+bx+c\geqslant 0$ for all $x \epsilon R$  When  $a> 0$  &   $b^{2}-4ac\leq 0$    $\left ( \; a,b,c\; \epsilon\; R \right )$

-

5, 5r and 5r2 are side of $\Delta 1e$.

Sum of two side of a triangle is always greater then the third (other) side.

So, when , 0<r<1

$\Rightarrow r + r^{2} > 1$

$\Rightarrow r^{2} + r -1 > 0$

$r > \frac{-1 + \sqrt{5}}{2}$

$r \epsilon \left ( \frac{-1 + \sqrt{5}}{2} , 1 \right )$

$\frac{ \sqrt{5}-1}{2}

When , r>1

$\Rightarrow \frac{ \sqrt{5}+1}{2} >\frac{1}{r}> 1$

$r\epsilon \left ( \frac{ \sqrt{5}-1}{2} ,\frac{ \sqrt{5}+1}{2} \right )$

Option 1)

3/4

Option 2)

5/4

Option 3)

7/4

Option 4)

3/2

Exams
Articles
Questions