Get Answers to all your Questions

header-bg qa

Evaluate \int \frac{\left ( x^{2}-1 \right )dx}{\left ( x^{4}+3x^{2}+1 \right )\tan^{-1}\left ( x+\frac{1}{x} \right )}

  • Option 1)

    -ln\left | \tan^{-1}\left ( x-\frac{1}{x} \right ) \right |+c

  • Option 2)

    ln\left | \tan^{-1}\left ( x-\frac{1}{x} \right ) \right |+c

  • Option 3)

    ln\left | \tan^{-1}\left ( x+\frac{1}{x} \right ) \right |+c

  • Option 4)

    -ln\left | \tan^{-1}\left ( x+\frac{1}{x} \right ) \right |+c

 

Answers (1)

best_answer

As we learnt

Type of Integration by perfect square -

Integration in the form of 

(i) \int f(x+\frac{1}{x})(1-\frac{1}{x^{2}})dx

(ii) \int f(x-\frac{1}{x})(1+\frac{1}{x^{2}})dx

(iii) \int f(x^{2}+\frac{1}{x^{2}})(x-\frac{1}{x^{3}})dx

(iv) \int f(x^{2}-\frac{1}{x^{2}})(x+\frac{1}{x^{3}})dx

(v) \int \frac{(1\pm \frac{1}{x^{2}})dx}{x^{2}+\frac{1}{x^{2}}}

(vi) \int \frac{f(x)dx}{ax^{4}+2bx^{3}+cx^{2}+2bx+a}  

- wherein

(i) \rightarrow put   (x+\frac{1}{x})=t

(ii) \rightarrow put    (x-\frac{1}{x})=t

(iii) \rightarrow put  (x^{2}+\frac{1}{x^{2}})=t

(iv) \rightarrow put (x^{2}-\frac{1}{x^{2}})=t

(v) \rightarrow for 1+\frac{1}{x^{2}}   put    x-\frac{1}{x}=t

     \rightarrow for 1-\frac{1}{x^{2}}   put    x+\frac{1}{x}=t 

(vi) \rightarrow put (x+\frac{1}{x})=t  if  b\neq 0

            put(x^{2}+\frac{1}{x^{2}})=t if b= 0

 

 

 

Integral can be written as

\int {\frac{{\left( {1 - \frac{1}{{{x^2}}}} \right)dx}}{{\left[ {{{\left( {x + \frac{1}{x}} \right)}^2} + 1} \right]{{\tan }^{ - 1}}\left( {x + \frac{1}{x}} \right)}}}

Let \: \left( {x + \frac{1}{x}} \right) = t.

Differentiating we get \left( {1 - \frac{1}{{{x^2}}}} \right)dx=dt

Hence,I=\int {\frac{{dt}}{{\left( {{t^2} + 1} \right){{\tan }^{ - 1}}t}}}

Now make one more substitution  tan-1t = u. Then

\frac{{dt}}{{{t^2} + 1}} = du\: \: {\rm{ and \: \: }}{\rm{I = }}\int {\frac{{{\rm{du}}}}{{\rm{u}}} = \ln |u| + c}

I = \ln \left| {{{\tan }^{ - 1}}t} \right| + c = \ln \left| {{{\tan }^{ - 1}}\left( {x - \frac{1}{x}} \right)} \right| + c

 


Option 1)

-ln\left | \tan^{-1}\left ( x-\frac{1}{x} \right ) \right |+c

Option 2)

ln\left | \tan^{-1}\left ( x-\frac{1}{x} \right ) \right |+c

Option 3)

ln\left | \tan^{-1}\left ( x+\frac{1}{x} \right ) \right |+c

Option 4)

-ln\left | \tan^{-1}\left ( x+\frac{1}{x} \right ) \right |+c

Posted by

gaurav

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE