Get Answers to all your Questions

header-bg qa

if f(x)=x^3 and g(x)=5x-3 then which of the following is true ? 

Option: 1

f(g(x)) is increasing function but g(f(x)) is decreasing function 


Option: 2

f(g(x)) is  decreasing function but g(f(x)) is increasing function 


Option: 3

f(g(x)) and  g(f(x)) both are increasing functions


Option: 4

f(g(x)) and  g(f(x)) both are decreasing function 


Answers (1)

best_answer

\\\text{Given }\\ f(x)=x^3 \ and \ g(x)=5x-3 \\ f(g(x))=f(5x-3)=(5x-3)^3\\ f'(g(x))=3\times 5(5x-3)^2 \geq 0\\ g(f(x))=g(x^3)=5x^3-5\\ g'(f(x))=15x^2 \geq 0\\

Hence both f(g(x)) and g(f(x)) are increasing functions

 

Method 2

Also as both f(x) and g(x) are increasing functions, so their composite functions f(g(x)) and g(f(x)) are increasing functions as well.

Posted by

Ritika Harsh

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions