Get Answers to all your Questions

header-bg qa

If \vec{a},\vec{b},\vec{c} are non-zero vectors, whoes \vec{a} and\vec{b} are non collinear then \vec{c} *(\vec{a}*\vec{b}) 

Option: 1

Is parallel to \vec{c}


 

 

 


Option: 2

Is parallel to (\vec{a}*\vec{b})


Option: 3

Is parallel to \vec{a} and\vec{b}


Option: 4

None of these


Answers (1)

best_answer

As we learn

Properties of Vector Product -

\vec{a}\times\vec{b} is perpendicular to \vec{a}\: and \:\vec{b}

- wherein

If\: \vec{a}\times\vec{b}=\vec{c}

\vec{c}.\vec{a}=\vec{c}.\vec{b}=0

 

 \vec{c}*(\vec{a}*\vec{b}) will be a vector perpendicullar on both \vec{c} and \vec{a}*\vec{b} and \vec{a}*\vec{b} itself is a perpendicular on both so vector perpendicular on \vec{a} *\vec{b} will be parallel to both \vec{a} and\vec{b}

 

Posted by

Info Expert 30

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions