Get Answers to all your Questions

header-bg qa

If the vertex of the parabola representing the quadratic equation 2x^2-bx+c, is \left (\frac{7}{4},-\frac{1}{8} \right ) then find the value of b and c

Option: 1

b=7 and c=6


Option: 2

b=-7 and c=6


Option: 3

a=7 and b=-6


Option: 4

b=-7 and c=-6


Answers (1)

best_answer

Graphical Representation of Quadratic Equation -

Vertex of a quadratic equation is \left ( -\frac{b}{2a}, \frac{-D}{4a}\right )

Now the value of a is 2

\\-\frac{B}{2A}=-\left (\frac{-b}{2\times2} \right ) \\\\ \frac{b}{4}=\frac{7}{4} \\\\b=7

And

\\\frac{-D}{4a}= \frac{-({b^2-4ac})}{4\times2}=\frac{-(7^2-4\times2c)}{4\times2} \\\\\\\frac{-{(7^2-4\times2c)}}{4\times2}=-\frac{1}{8} \\\\49-8c=1 \\8c=48 \\c=6

 

hence, correct option is (A)

 

Posted by

Rakesh

View full answer