Get Answers to all your Questions

header-bg qa

Length of chain is L and coefficient of static friction is \mu. Calculate maximum length of the chain which can be hung from the table without sliding.

 maximum length of hung chain

Option: 1

\frac{\mu L}{1+\mu }

 

 


Option: 2

\frac{(\mu+1)L}{\mu}


Option: 3

\frac{\mu L}{1-\mu}


Option: 4

\left ( \frac{1-\mu}{\mu } \right )L


Answers (1)

best_answer

As we learned

Maximum Length of hung chain -

\mu=\frac{m_{2}}{m_{1}}=\frac{mass\ hanging\ from\ table}{mass\ on\ table}

\mu=\frac{l'}{{l-l'}}

l'=\frac{\mu\ l}{(\mu+l)}

- wherein

l= length of chain

l'= chain hanging

(l-l')= chain lying

 

 

So 

Let y be the maximum length of the chain can be held outside the table without sliding

weight of the length of chain on table 

W{}'= \left ( L-y \right )\frac{M}{L}g

weight of hanging part of chain = W= \frac{M}{L}yg

For equilibrium

limiting friction force = weight of hanging part of the chain

F_{L}= \mu R=W

\mu {W}'= W\\* or\mu \frac{M}{L}\left ( L-y \right )g= \frac{M}{L}yg\\* \mu L-\mu y= y\\* y=\frac{\mu L}{1+\mu }

Posted by

mansi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE