Get Answers to all your Questions

header-bg qa

Let f(x) = x+1  \forall x\epsilon R  and g(x) = x^{2}-3x+2   \forall x\epsilon R  then number of points of discontinuty of \frac{f(x)}{g(x)}   equals 

  • Option 1)

    0

  • Option 2)

    1

  • Option 3)

    2

  • Option 4)

    3

 

Answers (1)

best_answer

As we have learned

Properties of Continuous function -

If   f,\:g   are two continuous functions at a point a of their common domain D.Then  f\pm g   fg are continuous at  a  and if   g(a)\neq 0  then 

 \frac{f}{g}      is also continuous at  x = a.

-

 

\frac{f(x)}{g(x)}=\frac{x+1}{x^{2}-3x+2}   which is not defined when {x^{2}-3x+2}=0

\Rightarrow x=1,2  so discomtinous at 2 points  

 

 

 

 

 

 


Option 1)

0

Option 2)

1

Option 3)

2

Option 4)

3

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE