Get Answers to all your Questions

header-bg qa

Position vector of the point, which divides join of the points having position vectors \hat{i}+2\hat{j}+\hat{k} and -\hat{i}-\hat{j}+2\hat{k} internally in ratio 2:1 is

Option: 1

\frac{1}{3}(-\hat{i}+5\hat{k})


Option: 2

\frac{1}{3}(\hat{i}-5\hat{k})


Option: 3

\frac{1}{3}(-\hat{i}-5\hat{k})


Option: 4

\frac{1}{3}(\hat{i}+5\hat{k})


Answers (1)

best_answer

Let \vec{a}=\hat{i}+2\hat{j}+\hat{k}, \, \, \vec{b}=-\hat{i}-\hat{j}+2\hat{k} 

And m : n = 2 : 1

\therefore \vec{r }=\frac{1(\hat{i}+2\hat{j}+\hat{k})+2(-\hat{i}-\hat{j}+2\hat{k})}{1+2}= \frac{-\hat{i}+5\hat{k}}{3}

So, option (A)

Posted by

Pankaj Sanodiya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Similar Questions