Get Answers to all your Questions

header-bg qa

Let \alpha ,\beta be real and z be a complex number. If z^{2}+\alpha z+\beta =0    has two distinct roots on the line Re z =1, then it is necessary that

  • Option 1)

    \left | \beta \right |=1\;

  • Option 2)

    \; \; \beta \in (1,\infty )\;

  • Option 3)

    \; \beta \in (0,1)\;

  • Option 4)

    \; \beta \in (-1,0)

 

Answers (2)

best_answer

As we learnt in

Definition of Complex Number -

z=x+iy, x,y\epsilon R  & i2=-1

- wherein

Real part of z = Re (z) = x & Imaginary part of z = Im (z) = y

 

 z^{2}+\alpha z+\beta=0

Let z = 1 + iy

So that (1+iy)^{2}+\alpha(1+iy)+\beta=0

\Rightarrow\ \;1-y^{2}+i2y+\alpha+i\alpha y+\beta=0

\therefore\ \;(1-y^{2}+\alpha + \beta)+i(2+\alpha)y=0

\therefore\ \; \alpha=-2   and   1-y^{2}-2+\beta=0

\Rightarrow\ \;y^{2}=\beta-1>0

\therefore\ \; \beta-1>0

    \beta \epsilon(1,\; \infty)

Correct option is 2.

 


Option 1)

\left | \beta \right |=1\;

This an incorrect option.

Option 2)

\; \; \beta \in (1,\infty )\;

This the correct option.

Option 3)

\; \beta \in (0,1)\;

This an incorrect option.

Option 4)

\; \beta \in (-1,0)

This an incorrect option.

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE