Get Answers to all your Questions

header-bg qa

If the system of linear equations
x+ay+z=3
x+2y+2z=6
x+5y+3z=b
has no solution, then :

  • Option 1)

    a=-1, b=9

  • Option 2)

    a=-1,b\neq 9

  • Option 3)

    a\neq-1,b= 9

  • Option 4)

    a=1,b\neq9

 

Answers (3)

best_answer

As we learned,

 

Cramer's rule for solving system of linear equations -

When \Delta =0 and atleast one of   \Delta_{1},\Delta _{2} and \Delta _{3}  is non-zero , system of equations has no solution

- wherein

a_{1}x+b_{1}y+c_{1}z=d_{1}

a_{2}x+b_{2}y+c_{2}z=d_{2}

a_{3}x+b_{3}y+c_{3}z=d_{3}

and 

\Delta =\begin{vmatrix} a_{1} &b_{1} &c_{1} \\ a_{2} & b_{2} &c_{2} \\ a_{3}&b _{3} & c_{3} \end{vmatrix}

 

 

x+ay+z=3
x+2y+2z=6
x+5y+3z=b

Determinant\, \bigtriangleup \: = \begin{vmatrix} 1 &a &1 \\ 1&2 &2 \\ 1& 5 &3 \end{vmatrix}

\Rightarrow \: 1\left ( 6-10 \right )-a\left ( 3-2 \right )+1\left ( 5-2 \right )

\Rightarrow \: -4-a+3=0

\Rightarrow \: -a-1=0

\Rightarrow \: a=-1

And atleast one of \bigtriangleup _{1}\bigtriangleup _{2}\bigtriangleup _{3} is non zero

Thus \begin{vmatrix} 1 &-1 &3 \\ 1&2 &6 \\ 1& 5 &b \end{vmatrix}\neq 0

1\left ( 2b-30 \right )+1\left ( b-6 \right )+3\left ( 3 \right )\neq 0

2b-30+b-6+9\neq 0

3b-27\neq 0\: \Rightarrow \: b\neq 9

 


Option 1)

a=-1, b=9

Option 2)

a=-1,b\neq 9

Option 3)

a\neq-1,b= 9

Option 4)

a=1,b\neq9

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

1

Posted by

Ravina Powar

View full answer