Get Answers to all your Questions

header-bg qa

If a, b, c are in A.P. and a^{2},b^{2},c^{2} are in G.P. such that a< b< c and a+ b+ c=\frac{3}{4} , then the value of a is :

  • Option 1)

    \frac{1}{4}-\frac{1}{4\sqrt{2}}

  • Option 2)

    \frac{1}{4}-\frac{1}{3\sqrt{2}}

  • Option 3)

    \frac{1}{4}-\frac{1}{2\sqrt{2}}

  • Option 4)

    \frac{1}{4}-\frac{1}{\sqrt{2}}

 

Answers (2)

best_answer

As we learned

 

Selection of terms -

If we have to take 3 terms in an AP, whose sum is known, we take them as a - d, a, a + d.

- wherein

Extension : If we have to take ( 2r + 1) terms we take them as

a - rd, a - (r - 1) d - - - -  - - -  -,a - d, a, a+d, - - - - - - - a + rd.

 

 and

 

Geometric Progession (GP) -

A progression of non - zero terms, in which every term bears to the preceding term a constant ratio.

- wherein

eg 2, 4, 8, 16,- - - - - -

and

100, 10, 1, 1/10,- - - - - - -

 

 

Let b=a+d

Also, a+b+c=\frac{3}{4}

and a=b-d ; c=b+d.

Thus a+b+c= \frac{3}{4} =3b \Rightarrow b= \frac{1}{4}

Thus numbers are \frac{1}{4}-d,\frac{1}{4},\frac{1}{4}+d

Also \left (\left (\frac{1}{4} \right )^{2} \right )^{2}=\left (\frac{1}{4}-d \right )^{2}\cdot \left (\frac{1}{4}+d \right )^{2}

\Rightarrow \: \frac{1}{256}=\left ( \frac{1}{16}-d^{2} \right )^{2}

\Rightarrow \: \pm \frac{1}{16}=\frac{1}{16}-d^{2}

Thus either d^{2}=0 or d^{2}=\frac{1}{8}

Thus d=\pm \frac{1}{2\sqrt{2}};\: but\: d> 0\: thus\: d=\frac{1}{2\sqrt{2}}

a=\frac{1}{4}-\frac{1}{2\sqrt{2}}


Option 1)

\frac{1}{4}-\frac{1}{4\sqrt{2}}

Option 2)

\frac{1}{4}-\frac{1}{3\sqrt{2}}

Option 3)

\frac{1}{4}-\frac{1}{2\sqrt{2}}

Option 4)

\frac{1}{4}-\frac{1}{\sqrt{2}}

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE