Get Answers to all your Questions

header-bg qa

\lim_{x\rightarrow \pi /4}(1+ \tan x)^{3} equals 

  • Option 1)

    1

  • Option 2)

    2

  • Option 3)

    4

  • Option 4)

    8

 

Answers (1)

best_answer

As we have learned

Limit of power -

Limit of power equals the power of limit provided the power function does not takes any indeterminate form.

\lim_{x\rightarrow a}f(x)^{K}=\lim_{x\rightarrow a}f(x)^{K}

Provided    \lim_{x\rightarrow a}f(x)  exist finitely end is non zero

- wherein

where k is non zero constant.

 

 As x approaches \pi/4 then tan x approaches 1 so 1+ \tan x approaches 2 and hence 

\lim_{x\rightarrow \pi /4} (1+ \tan x)^{3}= 2^{3}=8

 

 

 

 

 


Option 1)

1

Option 2)

2

Option 3)

4

Option 4)

8

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE