Get Answers to all your Questions

header-bg qa

If C is the mid point of AB and P  is any point outside AB, then

  • Option 1)

    \overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=0

  • Option 2)

    \overrightarrow{PA}+\overrightarrow{PB}+2\overrightarrow{PC}=\overrightarrow{0}

  • Option 3)

    \overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{PC}

  • Option 4)

    \overrightarrow{PA}+\overrightarrow{PB}=2\overrightarrow{PC}

 

Answers (1)

best_answer

As we have learned 

Position Vector -

If \vec{a} and \vec{b} are the position of vectors of two points A and B then

 \overrightarrow{AB}= \vec{b}-\vec{a}

\overrightarrow{AB}= P \vee of B - P\vee of A          

 

- wherein

 

 

Mid point formula -

\frac{\vec{a}+\vec{b}}{2}

- wherein

If \vec{a} and \vec{b} , position vector of mid-point of AB

 

 

\vec{PA}+\vec{PB} = (-\vec{P}+\vec{a })+ (\vec{-P}+\vec{b})\\= -2 \vec{P}+ (\vec{a}+\vec{b })

\vec{PC} = \frac{\vec{a}+\vec{b }-2\vec{P}}{2}\\

= \frac{\vec{PA}+\vec{PB}}{2}

= {\vec{PA}+\vec{PB}}= 2 \vec{PC}

 

 

 

 

 


Option 1)

\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=0

Option 2)

\overrightarrow{PA}+\overrightarrow{PB}+2\overrightarrow{PC}=\overrightarrow{0}

Option 3)

\overrightarrow{PA}+\overrightarrow{PB}=\overrightarrow{PC}

Option 4)

\overrightarrow{PA}+\overrightarrow{PB}=2\overrightarrow{PC}

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE