If A is a strictly triangular matrix of order 3 x 3  and B = diag\begin{bmatrix} 3 &5 &2 \end{bmatrix} ; Then |AB|=

  • Option 1)

    30

  • Option 2)

    5

  • Option 3)

    0

  • Option 4)

    can't be determined 

 

Answers (1)
H Himanshu

As we have learned

Strictly triangular matrix -

a_{ii}= 0   for   1\leq i\leq n

Where A= \left [ a_{ij} \right ]_{n\times n}

-

 

 Since diagonal elements of A are 0  and B is a diagonal matrix , If we multiply them we get a matrix with determinant  0 since the first column and last row have all elements = 0 

 


Option 1)

30

Option 2)

5

Option 3)

0

Option 4)

can't be determined 

Exams
Articles
Questions