Get Answers to all your Questions

header-bg qa

Three identical particles A, B and C of mass 100 \mathrm{~kg} each are placed in a straight line with \mathrm{A B=B C=13 \mathrm{~m}}. The gravitational force on a fourth particle \mathrm{P} of the same mass is \mathrm{F}, when placed at a distance 13 \mathrm{~m} from the particle \mathrm{B} on the perpendicular bisector of the line \mathrm{AC}. The value of F will be approximately :

Option: 1

21\: \mathrm{G}


Option: 2

100\: \mathrm{G}


Option: 3

59\: \mathrm{G}


Option: 4

42\: \mathrm{G}


Answers (1)

best_answer

           

Let,\mathrm{F_{A},F_{B}\: and\:F_{c} } be the gravitational force on particle \mathrm{P} by particle \mathrm{A,B\, and\: C} respectively .

\mathrm{\begin{aligned} \bar{F} &=\bar{F}_A+\bar{F}_B+\bar{F}_C \quad \text { (Given) } \\ \end{aligned}}

\mathrm{F =F_A \cos \theta+F_B+F_{C \cdot} \cos \theta }

   \mathrm{=\frac{2 G(100)(100)}{r^2} \times \frac{13}{r}+\frac{G(100)^2}{13^2}}

\mathrm{r=\sqrt{\left ( 13 \right )^{2}+\left ( 13 \right )^{2}}}

\mathrm{F=\frac{2G\left ( 100 \right )^{2}\times 13}{\left ( 13 \right )^{2}\times 2\times 13\sqrt{2}}}+\mathrm{\frac{G\left ( 100 \right )^{2}}{13^{2}}}

     =\mathrm{\frac{G\left ( 10 \right )^{4}}{\left ( 13 \right )^{2}}}\left [ \frac{1}{\sqrt{2}} +1\right ]

\mathrm{F=100\: G}

Hence (2) is correct option

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE