Get Answers to all your Questions

header-bg qa

 For any three positive real numbers a, b and c,

9(25a2+b2)+25(c2−3ac)=15b(3a+c). Then :

  • Option 1)

     b, c and a are in A.P.

  • Option 2)

     a, b and c are in A.P.

  • Option 3)

     a, b and c are in G.P.

  • Option 4)

     b, c and a are in G.P.

 

Answers (1)

best_answer

use the concept 

 

Arithmetic mean of two numbers (AM) -

A=\frac{a+b}{2}

- wherein

It is to be noted that the sequence a, A, b, is in AP where, a and b are the two numbers.

 

 

 

Geometric mean of two numbers (GM) -

GM= \sqrt{ab}

- wherein

It is to be noted that a,G,b are in GP and a,b are two non - zero numbers.

 

 

Harmonic mean (HM) of two numbers a and b -

HM= \frac{2ab}{a+b}

-

 

 

9\left ( 25a^{2}+b^{2} \right )+25\left ( c^{2}-3ac \right )=15b\left ( 3a+c \right )

=225a^{2}+9b^{2}+25c^{2}-75ac= 45ab+15bc

225a^{2}+9b^{2}+25c^{2}-45ab-15bc-75ac=0

multiply and divide by 2

\frac{1}{2}\left [ 450a^{2}+18b^{2}+50c^{2}-90ab-30bc-150ac \right ]=0

225a2+9b2+25c2+225a2+9b2+25c2-2x15ax3b-2x3bx5c-2x5cx15a

\therefore \left ( 15a-3b\right )^{2}+\left ( 3b-5c \right )^{2}+\left ( 5c-15a \right )^{2}= 0

\because \: \left ( a-b \right ) ^{2}+\left ( b-c \right )^{2}+\left ( c-a \right )^{2}

= 2a^{2}+2b^{2}+2c^{2}-2ab-2bc-2ac

So that  5a- 3b=0

b=\frac{5a}{3}

and 3b =5c

c=\frac{3b}{5}

So that

15a=3b=5c=K

\therefore \: a=\frac{K}{15}

     b=\frac{K}{3}

     C=\frac{K}{5}

Now

2\times b=\frac{2K}{3}

=a+c=\frac{K}{15}+\frac{K}{5}

=\frac{\left ( 1+3 \right )k}{15}

=\left ( \frac{4K}{15} \right )

\therefore a, b,c are not in A.p

Now

2c=a+b

\therefore \:\frac{2K}{5}=\frac{K}{15}+\frac{K}{3}

=\frac{6K}{15}=\frac{2K}{5}

So b, c,a are in A.P

 


Option 1)

 b, c and a are in A.P.

Correct option

Option 2)

 a, b and c are in A.P.

Incorrect option

Option 3)

 a, b and c are in G.P.

Incorrect option

Option 4)

 b, c and a are in G.P.

Incorrect option

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE