Get Answers to all your Questions

header-bg qa

In a \Delta PQR,

  if  3\sin P+4\cos Q=6\:\: and\: \: 4\sin Q+3\cos P=1, then the angle R is equal to

  • Option 1)

    \frac{5\pi }{6}

  • Option 2)

    \frac{\pi }{6}

  • Option 3)

    \frac{\pi }{4}

  • Option 4)

    \frac{3\pi }{4}

 

Answers (1)

As we learnt in

Trigonometric Equations -

The equations involving trigonometric function of unknown angles are known as trigonometric equations.

- wherein

e.g. \cos ^{2}\Theta - 4\cos \Theta = 1

 

 

 

3 \sin P+4\cos Q= 6

4\sin Q+3\cos P= 1

Squaring both sides, we get

9sin^{2}P+16cos^{2}Q+24\ sinP\ cos\ Q+16 sin^{2}Q+9 cos^{2}P+24\ sin\Q\ cos\ P=37

\left \Rightarrow (sin^{2}P+cos^{2}P)+16(sin^{2}Q+cos^{2}Q)\\ +24(sinP\ cos\ Q+sin\ Q\ cos\ P)=37

\Rightarrow 25+24\ sin(P + Q)=37

\Rightarrow \sin \left ( P+Q \right )=\frac{1}{2}

\Rightarrow \sin (\pi-(R))=\frac{1}{2}

R=\frac{\pi}{6}\ \, \, \, or\ \, \, \, \frac{5\pi}{6}

If R= \frac{5\pi }{6},then\ \: \: P< \frac{\pi }{6}\Rightarrow 3\sin P< \frac{1}{2} \Rightarrow sin P<\frac{3}{2}

Thus 4 cos Q=6-\frac{3}{2}=\frac{9}{2}\Rightarrow cosQ > 1, not\ possible

\Rightarrow R=\frac{\pi }{6}


Option 1)

\frac{5\pi }{6}

Incorrect

Option 2)

\frac{\pi }{6}

Correct

Option 3)

\frac{\pi }{4}

Incorrect

Option 4)

\frac{3\pi }{4}

Incorrect

Posted by

Vakul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE