Get Answers to all your Questions

header-bg qa

A bucket full of water cools from 75oC to 70oC in time T_1, from 70oC to 65oC in time T_2 and from 65oC to 60oC in time T_3, then

Option: 1

T_1 = T_2 = T_3


Option: 2

T_1 > T_2 > T_3


Option: 3

T_1 < T_2 < T_3 


Option: 4

T_1 > T_2 < T_3


Answers (1)

best_answer

As we have learnt,

 

Newton's Law of Cooling -

Rate of cooling is directly proportional to temperature difference between the body and its surrouding.

-

And When body Cools by Radiation from   \ \theta_1^0 C to theta \ \theta_2^0 C in time t        

    Then   \left[\frac{\theta_{1}-\theta_{2}}{t} \right ]=k\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0} \right ]     

 \because Rate of cooling = \left[\frac{ d\theta}{t} \right ] \ \ \alpha \ \ \left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0} \right ]

So \left (\frac{\theta_1 +\theta_2}{2} -\theta_o\right )_1 > \left (\frac{\theta_1 +\theta_2}{2} -\theta_o\right )_2 > \left (\frac{\theta_1 +\theta_2}{2} -\theta_o\right )_3

So \left (\frac{ d\theta}{T_1} \right )_1 > \left (\frac{ d\theta}{T_2}\right )_2 > \left (\frac{ d\theta}{T_3}\right )_3

Hence  T_1 < T_2 < T_3.

 

Posted by

Ajit Kumar Dubey

View full answer

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks