9. A balloon, which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.

Answers (1)

We need to find the value of \frac{dV}{dr}  at r =10 cm
The volume of the sphere (V) = \frac{4}{3}\pi r^{3}
\frac{dV}{dr} = \frac{d(\frac{4}{3}\pi r^{3})}{dr} = \frac{4}{3}\pi \times 3r^{2} = 4\pi r^{2} = 4\pi (10)^{2} = 4\pi \times 100 = 400\pi \ cm^{3}/s
Hence,  the rate at which its volume is increasing with the radius when the later is 10 cm is 400\pi \ cm^{3}/s

Preparation Products

Knockout NEET May 2021 (One Month)

An exhaustive E-learning program for the complete preparation of NEET..

₹ 14000/- ₹ 6999/-
Buy Now
Foundation 2021 Class 10th Maths

Master Maths with "Foundation course for class 10th" -AI Enabled Personalized Coaching -200+ Video lectures -Chapter-wise tests.

₹ 350/- ₹ 112/-
Buy Now
Knockout JEE Main April 2021 (One Month)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 14000/- ₹ 6999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions