2.13 A cube of side b has a charge q at each of its vertices. Determine the potential and electric field due to this charge array at the centre of the cube.

Answers (1)

As we know,

the distance between vertices and the centre of the cube 

d=\frac{\sqrt{3}b}{2}

Where b is the side of the cube.

So Potential at the centre of the cube:

P=8*\frac{kq}{d}=8*\frac{kq}{b\sqrt{3}/2}=\frac{16kq}{b\sqrt{3}}

Hence electric potential at the centre will be

 \frac{16kq}{b\sqrt{3}}=\frac{16q}{4\pi \epsilon_0 b\sqrt{3}}=\frac{4q}{\pi \epsilon_0 b\sqrt{3}}

The electric field will be zero at the centre due to symmetry i.e. every charge lying in the opposite vertices will cancel each other's field.

Preparation Products

Knockout KCET 2021

An exhaustive E-learning program for the complete preparation of KCET exam..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout KCET JEE Main 2021

It is an exhaustive preparation module made exclusively for cracking JEE & KCET.

₹ 27999/- ₹ 16999/-
Buy Now
Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Exams
Articles
Questions