12) A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is

( a ^{\frac{2}{3}}+ b ^\frac{2}{3}) ^ \frac{3}{2}

 

Answers (1)

It is given that
A point on the hypotenuse of a triangle is at a distance a and b from the sides of the triangle


Let the angle between  AC and BC is \theta
So, the angle between AD and ED is also \theta
Now,
   CD = b \ cosec\theta
And 
   AD = a \sec\theta
AC = H = AD + CD
      =  a \sec\theta + b \ cosec\theta
\frac{dH}{d\theta} = a \sec\theta\tan\theta - b\cot\theta cosec \theta\\ \frac{dH}{d\theta} = 0\\ a \sec\theta\tan\theta - b\cot\theta cosec \theta =0\\ a \sec\theta\tan\theta = b\cot\theta cosec \theta\\ a\sin^3\theta = b\cos^3\theta\\ \tan^3\theta = \frac{b}{a} \\ \tan\theta = \left ( \frac{b}{a} \right )^\frac{1}{3}
Now,
\frac{d^2H}{d\theta^2} > 0
When  \tan\theta = \left ( \frac{b}{a} \right )^\frac{1}{3}
Hence, \tan\theta = \left ( \frac{b}{a} \right )^\frac{1}{3} is the point of minima
\sec \theta = \frac{a\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}}{a^\frac{1}{3}} and  cosec \theta = \frac{b\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}}{b^\frac{1}{3}}
 

AC = \frac{a\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}}{a^\frac{1}{3}} + \frac{b\sqrt{a^\frac{2}{3}+b^\frac{2}{3}}}{b^\frac{1}{3}} = (a^\frac{2}{3}+b^\frac{2}{3})^\frac{3}{2}
Hence proved

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions