5.  ABCD is quadrilateral. Is
    \small AB+BC+CD+DA< 2(AC+BD)            ?
        

Answers (1)

Let the intersection point of the two diagonals be O.

As we know that the sum of two sides of ANY triangle is always greater than the third side(Triangles Inequality Rule).

So,

In \small \Delta AOB :

\overline {AO}+\overline {OB}>\overline{AB}...........(1)

In \small \Delta BOC :

\overline {BO}+\overline {OC}>\overline{BC}...........(2)

In \small \Delta COD :

\overline {CO}+\overline {OD}>\overline{CD}...........(3)

In \small \Delta DOA :

\overline {DO}+\overline {OA}>\overline{DA}...........(4)

Now, Adding all four equations we, get

\overline{AO}+\overline {OB}+\overline{BO}+\overline{OC}+\overline {CO}+\overline {OD}+\overline{DO}+\overline{OA}>\overline{AB}+\overline{BC}+\overline{CD}+\overline{DA}

2\left (\overline{AO}+\overline {OB}+\overline{OC}+\overline {OD} \right )>\overline{AB}+\overline{BC}+\overline{CD}+\overline{DA}

2\left (\left (\overline{AO}+\overline {OC} \right )+\left (\overline{CO}+\overline {OD} \right ) \right )>\overline{AB}+\overline{BC}+\overline{CD}+\overline{DA}

2\left (\overline{AC}+ \overline{BD} \right )>\overline{AB}+\overline{BC}+\overline{CD}+\overline{DA}

which can also be expressed as 

\small AB+BC+CD+DA< 2(AC+BD)

Hence this is true.

Preparation Products

Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Test Series NEET May 2021

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 6999/- ₹ 4999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Boost your Preparation for JEE Main with our Foundation Course
 
Exams
Articles
Questions