3.20 (c) Determine the equivalent resistance of networks shown in
Fig. 3.31.

(a) 

Answers (1)

It can be seen that in every small loop resistor 1 ohm is in series with another 1 ohm resistor and two 2 ohms are also in series and we have 4 loops,

so equivalent resistance of one loop is equal to the parallel combination of 2 ohms and 4 ohm that is 

Equivalent\ R_{loop}=\frac{2*4}{2+4}=\frac{8}{6}=\frac{4}{3}

now we have 4 such loops in series so, 

Total\ Equivalent\ R_{loop}=\frac{4}{3}+\frac{4}{3}+\frac{4}{3}+\frac{4}{3}=\frac{16}{3}

Hence equivalent resistance of the circuit is 16/3 ohm. 

Preparation Products

Knockout NEET Sept 2020

An exhaustive E-learning program for the complete preparation of NEET..

₹ 15999/- ₹ 6999/-
Buy Now
Rank Booster NEET 2020

This course will help student to be better prepared and study in the right direction for NEET..

₹ 9999/- ₹ 4999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Test Series NEET Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 11999/-
Buy Now
Exams
Articles
Questions