4.  Complete the hexagonal and star shaped Rangolies [see Fig. (i) and (ii)] by filling them with as many equilateral triangles of side \small 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

                                

Answers (1)

For finding the number of triangles we need to find the area of the figure.

Consider the hexagonal structure :

                      Area of hexagon  =   6  \times   Area of 1 equilateral 

Thus area of the equilateral triangle :           

           =\ \frac{\sqrt{3}}{4}\times a^2

or        =\ \frac{\sqrt{3}}{4}\times 5^2

or        =\ \frac{25\sqrt{3}}{4}\ cm^2

So, the area of the hexagon is  : 

       =\6\times \frac{25\sqrt{3}}{4}\ =\ \frac{75\sqrt{3}}{2}\ cm^2

And the area of an equilateral triangle having 1cm as its side is :

       =\ \frac{\sqrt{3}}{4}\times 1^2

or    =\ \frac{\sqrt{3}}{4}\ cm^2

Hence a number of equilateral triangles that can be filled in hexagon are :     

    =\ \frac{\frac{75\sqrt{3}}{2}}{\frac{\sqrt{3}}{4}}\ =\ 150

Similarly for star-shaped rangoli :

 Area :             

   =\12\times \frac{\sqrt{3}}{4}\times 5^2 \ =\ 75\sqrt{3}\ cm^2

Thus the number of equilateral triangles are : 

      =\ \frac{75\sqrt{3}}{\frac{\sqrt{3}}{4}}\ =\ 300

Hence star-shaped rangoli has more equilateral triangles.

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout NEET May 2022

An exhaustive E-learning program for the complete preparation of NEET..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions