Q 8 $\cos ( a \cos x + b \sin x )$, for some constant a and b.

Given function is
$f(x)=\cos ( a \cos x + b \sin x )$
Now, differentiation w.r.t x
$f^{'}(x)= \frac{d(f(x))}{dx}= \frac{d(\cos(a\cos x+ b \sin x))}{dx}$
$= -\sin(a\cos x+b\sin x).\frac{d(a\cos x+b\sin x)}{dx}$
$= -\sin(a\cos x+b\sin x).(-a\sin x+b\cos x)$
$= (a\sin x-b\cos x)\sin(a\cos x+b\sin x).$
Therefore, differentiation w.r.t x  $(a\sin x-b\cos x)\sin(a\cos x+b\sin x)$

Related Chapters

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Rank Booster NEET 2021

This course will help student to be better prepared and study in the right direction for NEET..

₹ 13999/- ₹ 9999/-
Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Knockout NEET May 2021

An exhaustive E-learning program for the complete preparation of NEET..

₹ 22999/- ₹ 14999/-