Get Answers to all your Questions

header-bg qa

1. Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set A = \{1,2,3 ...,13 ,14\} defined asR = \{(x,y): 3x - y = 0\}

Answers (1)

best_answer

A = \{1,2,3 ...,13 ,14\}

R = \{(x,y): 3x - y = 0\} = \left \{ \left ( 1,3 \right ),\left ( 2,6 \right ),\left ( 3,9 \right ),\left ( 4,12 \right ) \right \}

Since,  \left ( 1,1 \right ),\left ( 2,2 \right ),\left ( 3,3 \right ),\left ( 4,4 \right ),\left ( 5,5 \right )\cdot \cdot \cdot \cdot \cdot \cdot \left ( 14,14 \right ) \notin R so R is not reflexive.

Since, \left ( 1,3 \right ) \in R but  \left ( 3,1 \right ) \notin R so R is not  symmetric.

Since, \left ( 1,3 \right ),\left ( 3,9 \right ) \in R but \left ( 1,9 \right ) \notin R so R is not  transitive.

Hence, R is neither reflexive nor  symmetric and nor transitive.

Posted by

seema garhwal

View full answer

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads